VAE constrained MR guided PET reconstruction - CEA - Université Paris-Saclay
Communication Dans Un Congrès Année : 2023

VAE constrained MR guided PET reconstruction

Résumé

In this work, we investigate a deep learning PET-MR joint reconstruction method based on the ADMM algorithm. The a priori information to regularize the inverse problem is obtained with a VAE trained with high-quality images. Adaptive choice of the Lagrangian parameter ensures good convergence properties of the method. The proposed approach is tested on simple cases. It outperforms the classical MLEM for high noise levels.
Fichier principal
Vignette du fichier
Fully3D-1.pdf (438.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04846701 , version 1 (18-12-2024)

Licence

Identifiants

  • HAL Id : hal-04846701 , version 1

Citer

Valentin Gautier, Claude Comtat, Florent Sureau, Alexandre Bousse, Louise Friot-Giroux, et al.. VAE constrained MR guided PET reconstruction. 17th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine (Fully3D), Jul 2023, Stony Brook (NY), United States. ⟨hal-04846701⟩
0 Consultations
0 Téléchargements

Partager

More