Solving BSDE with adaptive control variate. A note on the rate of convergence of the operator P^k - MATHFI
Pré-Publication, Document De Travail Année : 2009

Solving BSDE with adaptive control variate. A note on the rate of convergence of the operator P^k

Résumé

This note is a complement of the paper "Solving BSDE with adaptive control variate". It deals with the convergence of the approximating operator P, based on a non parametric regression technique called local averaging. Although the computations are quite standard (see Hardle '92, Gyorfi etal. '02), the specificities of the paper are the following: - the support of the variables is unbounded; - the error has to be measured using specific L2-norms; - errors on the gradient are provided.
Fichier principal
Vignette du fichier
operator_final.pdf (234.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00373349 , version 1 (04-04-2009)

Identifiants

  • HAL Id : hal-00373349 , version 1

Citer

Emmanuel Gobet, Céline Labart. Solving BSDE with adaptive control variate. A note on the rate of convergence of the operator P^k. 2009. ⟨hal-00373349⟩
399 Consultations
114 Téléchargements

Partager

More