Pré-Publication, Document De Travail Année : 2025

Introducing time parallelisation within data assimilation

Résumé

Four dimensional variational data assimilation (4DVAR), in its incremental formulation, is based on optimisation algorithms which require the integration of the forward and adjoint versions of the original model in order to compute the gradient. For their use on parallel computers, these models are classically parallelised only in spatial dimension and this is a limiting factor on the maximum number of cores that can be utilised. We present here a novel approach of introducing additional time parallelisation using the Parareal algorithm. This approach is used here for integration of the forward model. We use a modified version of the inexact conjugate gradient method where the matrix-vector multiplication is supplied through Parareal. The use of this inexact conjugate gradient and the associated convergence conditions allows to precisely determine the stopping criterion of the Parareal iterations. The results are demonstrated by considering a one dimensional shallow water model. They are presented in terms of the accuracy (in comparison with the original exact conjugate gradient) and in terms of the number of required iterations of the Parareal algorithm.
Fichier principal
Vignette du fichier
preprint_sisc.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03540480 , version 1 (24-01-2022)
hal-03540480 , version 2 (06-04-2022)
hal-03540480 , version 3 (22-01-2025)

Licence

Identifiants

  • HAL Id : hal-03540480 , version 3

Citer

Rishabh Bhatt, Laurent Debreu, Arthur Vidard. Introducing time parallelisation within data assimilation. 2025. ⟨hal-03540480v3⟩
275 Consultations
249 Téléchargements

Partager

More