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VERIFICATION OF THE QUILLEN CONJECTURE IN THE RANK 2 IMAGINARY QUADRATIC CASE
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We confirm a conjecture of Quillen in the case of the mod 2 cohomology of arithmetic groups SL2

) is an imaginary quadratic ring of integers. To make explicit the free module structure on the cohomology ring conjectured by Quillen, we compute the mod 2 cohomology of SL2(Z[

) via the amalgamated decomposition of the latter group.

Introduction

The Quillen conjecture on the cohomology of arithmetic groups has spurred a great deal of mathematics (according to [START_REF] Knudson | Homology of linear groups[END_REF]). On the cohomology of a linear arithmetic group, Quillen did find a module structure over the Chern classes of the containing group GL n (C) (equivalently, of SL n (C)). Quillen did then conjecture that this module is free [START_REF] Quillen | The spectrum of an equivariant cohomology ring. I, II[END_REF]. While the conjecture has been proven for large classes of groups of rank 2 matrices, as well as for some groups of rank 3 matrices, an obstruction against its validity has been found by Henn, Lannes and Schwartz [START_REF] Henn | Localizations of unstable Amodules and equivariant mod p cohomology[END_REF], and this obstruction does occur at least for matrix ranks 14 and higher [START_REF] Henn | Exotic classes in the mod 2 cohomology of GLn(Z[1/2])[END_REF]. So the scope of the conjecture is not correct in Quillen's original statement, and the present paper contributes to efforts on determining the conjecture's correct range of validity. Considering the outcomes of previous research on this question, what seems likely, is that counterexamples may occur already at low matrix rank. In the present paper however, we confirm the Quillen conjecture over all of the Bianchi groups (the SL 2 groups over imaginary quadratic rings of integers), at the prime number 2: Theorem 1. Let G be a discrete subgroup of SL 2 (C), of finite virtual cohomological dimension, and let the 2-elements-group C = {-1, 1}, generated by minus the identity matrix, be contained in G. Then H * (G; F 2 ) is a free module over H * (SL 2 (C); F 2 ).

The case that we have in mind is that

G = SL 2 (O Q( √ -m ) [ 1 2 ]) for O Q( √ -m
) a ring of imaginary quadratic integers. Theorem 1 is a consequence of a theorem of Broto and Henn, as we shall explain in Section 2. To make explicit the free module structure on the cohomology ring in one example, we compute the mod 2 cohomology of SL 2 (Z[ √ -2 ][ 1 2 ]) via the amalgamated decomposition

SL 2 (Z[ √ -2 ][ 1 2 ]) ∼ = SL 2 (Z[ √ -2 ]) * Γ 0 ( √ -2) SL 2 (Z[ √ -2 ])
which is known from Serre's classical book [21], and which yields a Mayer-Vietoris long exact sequence on group cohomology that we evaluate.

For SL 2 (Z[ √ -1 ][ 1 2 ]), a computation of the mod 2 cohomology ring structure has already been achieved by Weiss [START_REF] Luc | Cohomology of GL2[END_REF], but the uniformizing element in the amalgamated decomposition is different for the Gaussian integers Z[ √ -1 ] from the one for the other imaginary quadratic rings. And after exclusion of the Gaussian integers, there is a general description of the mod 2 cohomology rings of the Bianchi groups and their subgroups [START_REF] Berkove | The mod 2 cohomology rings of congruence subgroups in the Bianchi groups[END_REF][START_REF] Berkove | The mod 2 cohomology rings of SL2 of the imaginary quadratic integers[END_REF]. So for our purposes, the Gaussian integers do not provide a typical example, while the ring Z[ √ -2 ] does. Moreover, having confirmed the Quillen conjecture for SL 2 over the Gaussian integers and over Z[ √ -2 ] removes one of the obstacles against SL 4 (Z[ 1 2 ]) to satisfy the Quillen conjecture (see diagram [START_REF] Adem | Periodic complexes and group actions[END_REF] in [START_REF] Luc | Cohomology of GL2[END_REF]), because in the centralizer spectral sequence for SL 4 (Z[ 1 2 ]) (compare with [START_REF] Henn | The cohomology of SL(3, Z[1/2[END_REF]), the stabilizers which have the highest complexity are of types

SL 2 (Z[ √ -2 ][ 1 2 ]), SL 2 (Z[ √ -1 ][ 1 2 ]) and SL 2 (Z[ √ 2 ][ 1 2 ]
). We follow Weiss's strategies for several aspects of our calculation, while we use a different cell complex and recent homological algebra techniques [START_REF] Berkove | The mod 2 cohomology rings of congruence subgroups in the Bianchi groups[END_REF][START_REF] Berkove | The mod 2 cohomology rings of SL2 of the imaginary quadratic integers[END_REF] to overcome specific technical difficulties entering with SL 2 (Z[

√ -2 ][ 1 2 ]
). Then we arrive at the result stated in Theorem 3 below. To see how this illustrates the module structure predicted by the Quillen conjecture, let us state the latter over SL n (C)).

Conjecture 2 (Quillen). Let ℓ be a prime number. Let K be a number field with ζ ℓ ∈ K, and S a finite set of places containing the infinite places and the places over ℓ. Then the natural inclusion O K,S ֒→ C makes H * (SL n (O K,S ); F ℓ ) a free module over the cohomology ring H * cts (SL n (C); F ℓ ). 

(C), so F 2 [e 4 ] is the image of H * cts (SL 2 (C); F 2 ). Then the coho- mology ring H * (SL 2 (Z[ √ -2 ][ 1 2 ]); F 2 )
is the free module of rank 10 over F 2 [e 4 ] with basis {1, x 2 , x 3 , y 3 , z 3 , s 3 , x 4 , s 4 , s 5 , s 6 }, where the subscript of the classes specifies their degree as a cohomology class.

Organization of the paper. In Section 1, we recall the amalgamated decomposition SL 2 (Z[ ]) on which our calculation is based, as well as its general form which we use in Section 2 in the proof of Theorem 1. In Section 3, we describe a cell complex for the involved congruence subgroup Γ 0 ( √ -2). We use it to compute the cohomology of the latter in Section 3.1. In Section 4, we determine the maps induced on cohmology by the two injections of Γ 0 ( ]) that characterize the amalgamated product. Finally in Section 5, we conclude the proof of Theorem 3.

√ -2 ][ 1 2 ]) ∼ = SL 2 (Z[ √ -2 ]) * Γ 0 ( √ -2) SL 2 (Z[ √ - 2 
√ -2) into SL 2 (Z[ √ - 2 

The amalgamated decomposition

For a quadratic ring O K , in this section we decompose SL 2 (O K [ 1 2 ]) as a product of two copies of SL 2 (O K ) amalgamated over a suitable congruence subgroup. It is described in Serre's book Trees [21] how to do such a decomposition in general, and example decompositions are given for SL 2 (Z[ 1 p ]) in Serre's book as well as for SL

2 (Z[ √ -1 ][ 1 2 ]
) in [START_REF] Luc | Cohomology of GL2[END_REF]. The following theorem is implicit in the section 1.4 of chapter II of [21]. Let K be a field equipped with a discrete valuation v. Recall that v is a homomorphism from (K \ {0}, •) to (Q, +) and that v(x + y) ≥ min(v(x), v(y)) for x, y ∈ K, with the convention that v(0) = +∞. Let O be the subset of K on which the valuation is non-negative. Then O is a subring of K and called the Discrete Valuation Ring. A uniformizer is an arbitrary element π ∈ O \ {0} with v(π) > 0 such that for all x ∈ O with v(x) > 0, the inequality v(π) ≤ v(x) holds.

Theorem 4 (Serre). Let A be a dense sub-ring of K. Then for any uniformizer π, we have the decomposition

SL 2 (A) ∼ = SL 2 (O ∩ A) * Γ 0 (π) SL 2 (O ∩ A), where Γ 0 (π) is the subgroup of SL 2 (O ∩ A) of upper triangular matrices modulo the ideal (π) of O ∩ A, injecting
• as the natural inclusion into the first factor of type SL 2 (O ∩ A),

• via the formula

a b c d → π -1 dπ π -1 c bπ a
into the second factor of type SL 2 (O ∩ A).

Note that in the above formula, we have replaced Serre's original matrix by an obviously equivalent one suggested by Weiss [START_REF] Luc | Cohomology of GL2[END_REF]. This has been done with the purpose to have an alternative description of the injection in question as conjugation by the matrix 0 1 π 0 .

We can now apply Serre's above theorem to quadratic number fields.

Definition 5. Let K be a quadratic number field, let p be a prime number, and let v p be the p-adic valuation of Q. We define a function v N p on K by v N p (x) := v p (N (x)), where N (x) is the number-theoretic norm of x ∈ K.

Note that as K is quadratic, N (x) = xx with x the Galois conjugate of x, and for K imaginary quadratic, the Galois conjugate is the complex conjugate.

Lemma 6 (recall of basic algebraic number theory). The function v N p (i) is a valuation of K, (ii) extends the valuation 2v p (the latter being the double of the p-adic valuation of Q), (iii) and takes its values exclusively in Z.

An elementary proof can be found in the first preprint version of the present paper. Now we can turn our attention to SL

2 (Z[ √ -2][ 1 2 ]). Choose K := Q( √ -2), equipped with the valuation v N 2 defined above. Then we can expect O = Z (2) [ √ -2]. Furthermore, we expect A := Z[ √ -2][ 1 2 ] to be dense in Q( √ - 2 
) with respect to the topology induced by v N 2 ; and ]). We note that v N 2 (2) = 2, so 2 is not a uniformizer.

O ∩ A = Z[ √ -2]. As v N 2 ( √ -2) = 1 is minimal on the part of O on which v N 2 is positive, we can choose √ -2 as a uniformizer. Then Theorem 4 yields that SL 2 (Z[ √ -2][ 1 2 ]) ∼ = SL 2 (Z[ √ -2]) * Γ 0 ( √ -2) SL 2 (Z[ √ -2]), where Γ 0 ( √ -2) is the subgroup of SL 2 (Z[ √ -2]) of upper triangular matrices mod- ulo the ideal ( √ -2) of Z[ √ -2], injecting • as the natural inclusion into the first factor of type SL 2 (Z[ √ -2]), • via the formula a b c d → d √ -2 -1 c b √ -2 a into the second factor of type SL 2 (Z[ √ - 2 

The module over the Chern class ring

In this section, we shall explain how Theorem 1 can be proven with Duflot's ideas [START_REF] Duflot | Depth and equivariant cohomology[END_REF], our access to her ideas being via a theorem of Broto and Henn. The referee has extracted the crucial argument necessary to use Duflot's ideas for this purpose, and distilled a direct proof. We are going to study her/his proof before we explain how to apply Broto and Henn's theorem. The referee's proof works for G being any subgroup of SL 2 (C) which contains the order-2-subgroup C := {-1, 1}. We let i : G ֒→SL 2 (C) and j : C ֒→ G denote the inclusions. We recall from the literature on characteristic classes of vector bundles that the second Chern class c 2 associated to the natural representation of SL 2 (C) yields the cohomology ring structure H * (SL 2 (C);

F 2 ) ∼ = F 2 [c 2 ]
, where c 2 is of degree 4. We recall also that H * (C; F 2 ) ∼ = F 2 [t], with t of degree 1, and that (i • j) * is injective (namely, (i • j) * (c 2 ) = t 4 ). Then the referee states the following theorem, and we are going to look into how it is proven.

Theorem 7. H * (G; F 2 ) is a free module over H * (SL 2 (C); F 2 ).
It has been observed in Duflot's work [START_REF] Duflot | Depth and equivariant cohomology[END_REF], pursued by Dwyer and Wilkerson [START_REF] Dwyer | Spaces of null homotopic maps[END_REF] and then by Broto and Henn [START_REF] Broto | Some remarks on central elementary abelian p-subgroups and cohomology of classifying spaces[END_REF], that the group morphisms

(g, c) → gc, SL 2 (C) × C →SL 2 (C) respectively G × C → G provide H * (SL 2 (C); F 2 ) respectively H * (G; F 2 )
with a comodule structure with respect to H * (C; F 2 ), given by an induced morphism

δ : H * (SL 2 (C); F 2 ) → H * (SL 2 (C); F 2 ) ⊗ H * (C; F 2 ), respectively δ : H * (G; F 2 ) → H * (G; F 2 ) ⊗ H * (C; F 2 )
, such that the induced morphism i * is a comodule map. In order to prove that H * (G; F 2 ) is free, it only remains to prove that multiplication with i * (c 2 ) is injective. We shall do this in the following lemma of the referee.

Lemma 8. If α ∈ H * (G; F 2 ) is a non-zero element, then i * (c 2 ) ∪ α is non-zero.
Proof. Making use of the above comodule structure, it is of course enough to show that δ(i * (c 2 ) ∪ α) is non-zero. We easily see that δ(i * (c 2 )) = i * (c 2 ) ⊗ 1 + 1 ⊗ t 4 , and therefore

δ(i * (c 2 ) ∪ α) = δ(i * (c 2 )) ∪ δ(α) = (i * (c 2 ) ⊗ 1 + 1 ⊗ t 4 ) ∪ δ(α).
Let r be the largest integer such that δ(α) may be written as

α ⊗ 1 + |β|>|α|-r β ⊗ t |α|-|β| + |γ|=|α|-r γ ⊗ t r ,
where the last term is non-trivial (it might be equal to 1 ⊗ t |α| ), which is possible since α was assumed to be non-zero. In the product (i * (c 2 ) ⊗ 1 + 1 ⊗ t 4 ) ∪ δ(α), the term |γ|=|α|-r γ ⊗ t r+4 cannot cancel, as all other terms are of lower degree on the second factor of the tensor product. This proves the lemma. This completes the proof of Theorem 7, so in particular we have the weaker statement presented as Theorem 1.

The above proof of Theorem 1 can be reformulated in the following way using Broto and Henn's theorem. For this purpose, we define the depth of an ideal I in a finitely generated module M over a Noetherian ring as in standard commutative algebra textbooks [START_REF] Matsumura | Commutative algebra[END_REF]: We assume I • M = M . A sequence of elements x 1 , . . . , x n of I of positive degree is called regular on M if x 1 is not a zero divisor on M and x i+1 is not a zero divisor on the quotient M/ (x 1 ,...,x i )M . Under these conditions, any two maximal regular sequences have the same finite length, called the depth.

The following lemma is the special case of depth 1 of a classical commutative algebra result. The reader can easily work out a proof for it. Lemma 9. Let K be a field and A be a positively graduated, connected K-algebra. Let M be a graduated A-module with M n = 0 for n < 0 and M n a finite-dimensional K-vector space for all n ∈ N ∪ {0}. Let x be an element in the maximal ideal of A which operates on M injectively by multiplication. Then M is a free K[x]-module.

Proof of Theorem 1. Theorem 1.1 of [START_REF] Broto | Some remarks on central elementary abelian p-subgroups and cohomology of classifying spaces[END_REF] states, in its variant provided by remark 2.3 of the same paper: Let p be a prime, G be a discrete group of finite virtual cohomological dimension, X a G-space and C a central elementary Abelian p-subgroup of G acting trivially on X. If H * (X, F p ) is finite dimensional over F p , then the depth of H * G (X, F p ) is at least as big as the rank of C.

We set p = 2, and G be a discrete subgroup of SL 2 (C), of finite virtual cohomological dimension, containing C = {-1, 1}. Then as we know from Borel and Serre [START_REF] Borel | Cohomologie d'immeubles et de groupes S-arithmétiques[END_REF], G acts properly discontinuously on the space X constructed as the direct product of SL 2 (C)/SU 2 and a Bruhat-Tits building. Note that in the case

G = SL 2 (O Q( √ -m ) [ 1 2 
]) that we have in mind, the Bruhat-Tits building is associated to the 2-adic group SL 2 (Q( √ -m) 2 ). Moreover, C acts trivially on X.

As X is finite-dimensional, the virtual cohomological dimension of the discrete group G is finite. We consider H * G (X, F 2 ) as an H * (G, F 2 )-module via the algebra map H * (G, F 2 ) → H * G (X, F 2 ) induced by projection from X to a point. Then as H * (X, F 2 ) is finite dimensional over F 2 , Broto and Henn's above theorem provides us at least depth 1 for the maximal ideal in H * G (X, F 2 ) constituted by the elements of strictly positive degree, and hence a regular sequence x 1 , . . . , x n with n ≥ 1, where x 1 ∈ H * (G, F 2 ) is of strictly positive degree and operates on H * G (X, F 2 ) injectively by multiplication. Now we can apply Lemma 9 in order to obtain the free module structure on H

* G (X, F 2 ) As X is contractible, H * (G, F 2 ) = H * G (X, F 2 ).
3. The cell complex for the congruence subgroup Due to the above amalgamated decomposition, we want to study the action of the congruence subgroup

Γ 0 ( √ -2) := a b c d ∈ SL 2 (Z[ √ -2 ]) c ∈ √ -2 in the Bianchi group SL 2 (Z[ √ - 2 
]) on a suitable cell complex (a 2-dimensional retract of hyperbolic 3-space). For this purpose, we are in the fortunate situation that the symmetric space SL 2 (C)/SU 2 acted on by SL 2 (Z[ √ -2 ]) is isometric to real hyperbolic 3-space H 3 . We can use the upper half-space model for H 3 , where as a set, 

H 3 = {(z, ζ) ∈ C × R | ζ > 0}.
z ′ = cz + d (az + b) + ζ 2 ca |cz + d| 2 + ζ 2 |c| 2 , ζ ′ = | det γ|ζ |cz + d| 2 + ζ 2 |c| 2 .
Luigi Bianchi [START_REF] Bianchi | Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî[END_REF] has constructed a fundamental polyhedron for the action on 

H 3 of SL 2 (Z[ √ - 2 
A = 1 ω ω -1 , B = -1 -ω -ω 2 1 + ω , C = -1 -1 2 1 ,

Vertex Projection z ζ

2 v 1 -1 2 -ω 2 1/4 v ′ 1 1 2 -ω 2 1/4 v ′′ 1 1 2 + ω 2 1/4 v ′′′ 1 -1 2 + ω 2 1/4 v 2 -1 2 -ω 4 1/8 v ′ 2 -ω 2 1/2 v ′′ 2 ω 2 1/2 v ′′′ 2 -1 2 + ω 4 1/8
(c) A fundamental domain (strict in its interior) for the action of Γ 0 ( √ -2) on the 2-dimensional retract is given by the three quadrangles with marked vertices from Figure 1(A).

v 2 v ′′′ 2 v 1 v ′ 2 v ′′ 2 v ′ 1 v ′′′ 1 v ′′ 1 C B A A c b (d)
Quotient space of the latter fundamental domain by its edge identifications. respectively their conjugates by the above mentioned edge identifications. A fundamental domain for SL 3.1. The cohomology of the congruence subgroup. From Figure 1(D), we see that the orbit space of the 2-dimensional retract X of hyperbolic space under the action of Γ 0 ( √ -2) has the homotopy type of a 2-torus, so

2 (Z[ √ -2 ]) is given by the quadrangle (v ′ 2 , v ′ 1 , v ′′ 1 , v ′′ 2 ). In SL 2 (Z[ √ - 2 
dim F 2 H p ( Γ 0 ( √ -2) \X; F 2 ) =            0, p > 2, 1, p = 2, 2, p = 1, 1, p = 0.
We also see in Figure 1(D) that the non-central 2-torsion subcomplex X s , namely the union of the cells of X whose cell stabilizers in Γ 0 ( √ -2) contain elements of order a power of 2, and which are not in the center of Γ 0 ( √ -2), has an orbit space Γ 0 ( √ -2) \X s of shape . Following [START_REF] Berkove | The mod 2 cohomology rings of congruence subgroups in the Bianchi groups[END_REF][START_REF] Berkove | The mod 2 cohomology rings of SL2 of the imaginary quadratic integers[END_REF], we define the co-rank c to be the rank of the cokernel of

H 1 ( Γ 0 ( √ -2) \X; F 2 ) → H 1 ( Γ 0 ( √ -2) \X s ; F 2 )
induced by the inclusion X s ⊂ X. Again inspecting Figure 1(D), we can see that the co-rank c vanishes. Concerning the equivariant spectral sequence discussed in Section 4 below, the d p,2q 2 differentials for p > 0 are trivial for degree reasons. Furthermore, we obtain the vanishing of the d 0,q 2 differentials from lemmas in [START_REF] Berkove | The mod 2 cohomology rings of congruence subgroups in the Bianchi groups[END_REF]: lemma 19 for d 0,4q+2 2 , lemma 21 for d 0,4q 2 and lemma 25 for d 0,4q+3 2 . Grant S. Lakeland did use classical group-geometric methods (see for instance [START_REF] Macbeath | Groups of homeomorphisms of a simply connected space[END_REF]) to compute for us from the information presented in Figure 1 a presentation for Γ 0 ( √ -2),

Γ 0 ( √ -2) = α, β, γ, δ | α•β •α -1 •β -1 , γ •δ•γ -1 •δ -1 , (α•δ) 2 , (β •γ) 2 , (α•γ •α -1 •γ -1 ) 2 , where α = 1 1 0 1 , β = 1 √ -2 0 1 , γ = 1 0 - √ -2 1 , δ = 1 0 -2 1 . So we obtain the Abelianization Z 2 ⊕ (Z/2Z) 2 ∼ = (Γ 0 ( √ -2)) ab ∼ = H 1 (Γ 0 ( √ - 2 
); Z), which we insert into the dévissage of the equivariant spectral sequence to conclude that the d 0,4q+1 2 -differentials vanish as well. Then using [2, theorem 1], we obtain the following result. 

Proposition 10. dim F 2 H p (Γ 0 ( √ -2); F 2 ) =            5 

The maps on equivariant spectral sequences

In order to evaluate the Mayer-Vietoris long exact sequence of the amalgamated decomposition SL

2 (Z[ √ -2 ][ 1 2 ]) ∼ = SL 2 (Z[ √ -2 ]) * Γ 0 ( √ -2) SL 2 (Z[ √ -2 ]), we need to find out what the two injections of Γ 0 ( √ -2) into SL 2 (Z[ √ - 2 ] 
), namely i (the natural inclusion) and j (the conjugation map defined in Theorem 4) induce on the mod 2 cohomology rings of these groups. For this purpose, we make use of the equivariant spectral sequences

E p,q 1 = σ∈representatives( Γ \X p ) H q (Γ σ ; F 2 ) converging to H p+q (Γ; F 2 ), for Γ being either Γ 0 ( √ -2) or SL 2 (Z[ √ - 2 
]) (cf. Brown's book [7, chapter VII] for the construction of equivariant spectral sequences). The notation Γ σ stands for the stabilizer in Γ of the p-cell σ, and the p-cells indexing the above direct sum run through a set of orbit representatives. As we let the p-cells for SL 2 (Z[ √ -2 ]) run through a fundamental domain contained in the one for Γ 0 ( √ -2), we get two compatible equivariant spectral sequences, and can compute the maps on H p+q (Γ; F 2 ) from the maps between the two E 1 -pages. In Section 3.1, we have seen that the d 2 -differentials are all trivial for Γ 0 ( √ -2), and having in mind the cylindrical shape of SL 2 (Z[

√ (v ′ 2 , v ′ 1 , v ′′ 1 , v ′′ 2 )
, they are trivial as well for SL 2 (Z[ √ -2 ]). Therefore, this computation splits into two parts: firstly, the map on bottom rows E p,0 2 ∼ = H p ( Γ \X; F 2 ), where X is the 2-dimensional retract of hyperbolic space; and secondly the maps supported on cells with 2-torsion in their stabilizers. We can use the tools developed in [START_REF] Berkove | The mod 2 cohomology rings of congruence subgroups in the Bianchi groups[END_REF][START_REF] Berkove | The mod 2 cohomology rings of SL2 of the imaginary quadratic integers[END_REF] to take advantage of this splitting. The result of the first part is the following proposition. Proposition 11. The injections i and j induce a map

2 H * ( SL 2 (Z[ √ -2 ]) \X; F 2 ) (i * , j * ) -→ H * ( Γ 0 ( √ -2) \X; F 2 )
which is injective, respectively surjective, except for ker(i 0 , j 0 ) ∼ = F 2 and coker(i 2 , j 2 ) ∼ = F 2 .

Proof. The two generators of H 1 ( Γ 0 ( √ -2) \X; F 2 ) are supported on the loops obtained from the edges stabilized by to the matrices A, respectively C. Considering again the cylindrical shape of SL 2 (Z[

√ -2 ]) \X obtained from the edge identification on the quadrangle (v ′ 2 , v ′ 1 , v ′′ 1 , v ′′ 2 ), the generator of H 1 ( SL 2 (Z[ √ -2 ]) \X; F 2
) is supported on the loop obtained from the edge stabilized by the matrix c. The matrices

c and C = i(C) are conjugate in SL 2 (Z[ √ -2 ]) via the matrix h := 1 0 1 1 which sends the quadrangle (v 2 , v 1 , v ′′′ 1 , v ′′′ 2 ) to the quadrangle (v ′ 2 , v ′ 1 , v ′′ 1 , v ′′ 2 )
. Also, the matrix j(A) ∼ C is conjugate to c via h. Hence (i 1 , j 1 ) identifies the two loops of

2 H 1 ( SL 2 (Z[ √ -2 ]) \X; F 2 ) with those of H 1 ( Γ 0 ( √ -2) \X; F 2 )
, and thus is an isomorphism. The ranks of (i 0 , j 0 ) and (i 2 , j 2 ) are obvious.

As X is a 2-dimensional retract, the E p,q 1 terms are concentrated in the three columns p ∈ {0, 1, 2}. And for E p,q 2 (SL 2 (Z[ √ -2 ]), X; F 2 ) (we shall use this notation with arguments to distinguish between the two spectral sequences), they are concentrated in the two columns p ∈ {0, 1}, because H 2 ( SL 2 (Z[ √ -2 ]) \X; F 2 ) = 0. As we have seen in Section 3.1 that d 0,q 2 (Γ 0 ( √ -2), X; F 2 ) = 0, the p = 2 column has for all q ≥ 0 stationary terms E 2,q 2 (Γ 0 ( √ -2), X;

F 2 ) ∼ = H 2 ( Γ 0 ( √ -2) \X; F 2 ) ∼ = F 2 which remain as the E 2,q
∞ -term. So the following lemma gives us all the information that we need in order to achieve the computation. Lemma 12. In degrees q > 0, p ∈ {0, 1}, the map

2 E p,q 2 (SL 2 (Z[ √ -2 ]), X; F 2 ) (i * , j * ) -→ E p,q 2 (Γ 0 ( √ -2), X; F 2 )
is surjective, with kernel

q = 4k + 4 e i 4 + e j 4 0 q = 4k + 3 b i 3 + x j 3 , b j 3 + x i 3 e A ,i 2 b i 1 + e A ,j 2 b j 1 q = 4k + 2 0 e A ,i 2 
+ e A ,j 2 
q = 4k + 1 0 b i 1 + b j 1 k ∈ N ∪ {0} p = 0 p = 1,
where the subscripts specify the degrees of the cohomology classes, and the superscripts can be ignored (they only serve for tracking back the origin of a class in the calculation). Throughout the column p = 2, there is a constant term F 2 in the corresponding cokernel.

Proof. From Proposition 11, we already know the contribution of the orbit spaces: a term of type F 2 in rows q ≡ 0 mod 4 in the column p = 0, and a constant term F 2 throughout the column p = 2 in the corresponding cokernel. Complementary to this, there is a contribution of the non-central 2-torsion subcomplexes X s (Γ), which we are now going to determine, implicitly making use of information gathered in the proof of Proposition 11, like the action of the matrix h. The maps i and j from the stabilizers on X s (Γ 0 ( √ -2)) to the stabilizers on

X s (SL 2 (Z[ √ -2 ])), C C, B B B, A A -→ i, j -→ c A, c A A, b
are determined by the following conjugacies in SL 2 (Z[ √ -2 ]):

j(A) = -1 1 -2 1 = P -1 • C • P = P -1 • i(C) • P , where P = 1 + ω -1 -2 1 -ω ; j(B) = 1 + ω -ω 2 -1 -ω = Q -1 • B • Q = Q -1 • i(B) • Q, where Q = 1 -1 -ω 0 1 . 
In order to untangle the computation below, about which maps are induced by i and j on the mod 2 cohomology rings of the finite stabilizers, we single out already now those which induce zero maps on the E 2 -level. Namely, the assignments

j(C) = 1 -ω -ω -1 = R -1 • A • R, where R = 0 -1 1 -ω , respectively i(A) = A,
induce on the E 1,q 2 (Γ 0 ( √ -2), X, F 2 ) terms, which have their generators suppported on the loops obtained from the edges stabilized by C, respectively A, zero maps coming from the edge stabilized by A in X s (SL 2 (Z[ √ -2 ])), because the latter supports the zero class in

E 1,q 2 (SL 2 (Z[ √ -2 ]), X, F 2 )
. Therefore, we can ignore those two assignments, and work only with the remaining ones.

Having singled out where maps pass to zero on the E 2 level, we simply mark "zero map induced" at those places in the following diagrams. For the map i, at the passage from the 2-torsion subcomplex of Γ 0 ( √ -2) to the 2-torsion subcomplex of SL 2 (Z[ √ -2 ]) when the second loop is being folded down onto the middle edge, we have remaining

C ∼ = Z/4 ∼ = C, B ∼ = Q 8 ∼ = B ∼ = Z/4 ∼ = B, A ∼ = Q 8 A → A, B → c -1 • B • c A ∼ = Z/4 zero map induced c ∼ = Z/4 A, c ∼ = Q 8 A ∼ = Z/4 A, b ∼ = Te 24
On mod 2 cohomology rings, this induces Assembling the maps i and j to (i, j), we can now see that (i * , j * ) is surjective on the E p,q 1 terms in the two columns p ∈ {0, 1}. To compute the kernel of (i * , j * ), we compare the E 2 pages:

F 2 [e 2 ](b 1 ) ∼ = F 2 [e 4 ](x 1 , y 1 , x 2 , y 2 , x 3 ) ∼ = F 2 [e 2 ](b 1 ) ∼ = F 2 [e 4 ](x 1 , y 1 , x 2 , y 2 , x 3 ) b 3 → x 3 , e 4 → e 4
The E 2 page for the action of SL 2 (Z[ √ -2 ]) on X is concentrated in the two columns p ∈ {0, 1}, with the following generators, where the superscripts specify the stabilizer of the supporting cell. The E 2 page for the action of Γ 0 ( √ -2) on X is concentrated in the three columns p ∈ {0, 1, 2}, with the following generators. F 2 q = 4k + 1

x

C,B 1 , x B,A 1 b C 1 + b A 1 F 2 k ∈ N ∪ {0} p = 0 p = 1 p = 2
This yields the claimed kernel (adding i, respectively j to the superscripts to specify the relevant copy of E p,q (SL 2 (Z[ √ -2 ]), X; F 2 ) for the pre-image), and also yields the claimed cokernel.

Investigating the module structure of the cohomology ring

With the above preparation, we will in this section conclude the proof of Theorem 3. Combining Proposition 11 and Lemma 12, we can see that the injections i and j induce a map on cohomology of groups, 

Theorem 3 .

 3 Denote by e 4 the image of the second Chern class of the natural representation of SL 2

  Then we can use Poincaré's explicit formulas for the action: For γ = a b c d ∈ GL 2 (C), the action of γ on H 3 is given by γ • (z, ζ) = (z ′ , ζ ′ ), where

  ]), and we use Lakeland's method[START_REF] Berkove | The mod 2 cohomology rings of congruence subgroups in the Bianchi groups[END_REF] Section 6] to find a set translates of it under elements of SL 2 (Z[ √ -2 ]) outside Γ 0 ( √ -2), which constitute a fundamental domain F for Γ 0 ( √ -2), strict in its interior: No two points in its interior can be identified by the action of an element of Γ 0 ( √ -2). A cumbersome aspect of Bianchi's fundamental polyhedron, and hence also of F, is that it is not compact, but open at cusps which sit in the boundary of H 3 . We shall remedy this aspect with an SL 2 (Z[ √ -2 ])-equivariant retraction, namely a retraction of H 3 onto a 2-dimensional cell complex, along geodesic arcs away from the cusps, which commutes with the SL 2 (Z[ √ -2 ])-action. Our choice of F, and on it Mendoza's SL 2 (Z[ √ -2 ])-equivariant retraction[START_REF] Mendoza | Cohomology of PGL2 over imaginary quadratic integers[END_REF] away from all cusps, are depicted in Figure1(A). An alternative choice would have been to use Flöge's SL 2 (Z[ √ -2 ])equivariant retraction [12] away only from cusps in the Γ 0 ( √ -2)-orbit of ∞, and then to use a Borel-Serre compactification on the remaining cusps; the outcome of that alternative is shown in [2, figure for Γ 0 ( √ -2)]. In Figure 1(B), we list the coordinates of the vertices of F, and in Figure 1(C), we display the compact fundamental domain for Γ 0 ( √ -2) obtained from F in the 2-dimensional retract of H 3 . By boundary identifications on the latter compact fundamental domain, we obtain the quotient space of the 2-dimensional retract modulo the Γ 0 ( √ -2)-action, as drawn in Figure 1(D). The fundamental domain in Figure 1(C) is subject to edge identifications ≫, which are in Γ 0 ( √ -2). With the notation ω := √ -2, the non-trivial edge stabilizers are generated by the order-4-matrices

( a )

 a Fundamental polyhedron for the action of Γ 0 ( √ -2) on hyperbolic 3-space. We retract it SL 2 (Z[ √ -2 ])equivariantly away from the cusps at 0 and ∞, along the dotted edges. (b) Coordinates of the above vertices in upper half-space. Denote √ -2 by ω, denote the height square by ζ 2 and project to the boundary plane at height ζ = 0.

Figure 1 .

 1 Figure 1. The cell complex for Γ 0 ( √ -2)

  ]), there are two additional edge stabilizer generators,

, p ≡ 4

 4 or 5 mod 4 and p > 1, 6, p ≡ 2 or 3 mod 4, 4, p = 1, 1, p = 0.

F 2 [e 2 ]F 2 [e 2 ](b 1 )∼ = Q 8 CF 2 F 2 F 2 [e 4 ](x 1 , y 1 , x 2 , y 2 , x 3 ) F 2 [e 2 ](b 1 )F 2 4 F 2

 222218222411223221242 F 2 [e 4 ](x 1 , y 1 , x 2 , y 2 , x 3 ) F 2 [e 2 ](b 1 ) F 2 [e 4 ](b 3 )For the map j, we have remainingC ∼ = Z→ A, B → b -1 • A • b A ∼ = Z/4 c ∼ = Z/4 A, c ∼ = Q 8 A ∼ = Z/4 A, b ∼ = Te 24On mod 2 cohomology rings, this inducesF 2 [e 2 ](b 1 ) zero map induced ∼ = [e 4 ](x 1 , y 1 , x 2 , y 2 , x 3 ) ∼ = [e 2 ](b 1 ) ∼ = [e 2 ](b 1 ) F 2 [e 4 ](x 1 , y 1 , x 2 , y 2 , x 3 ) F 2 [e 2 ](b1 ) b 3 → x 3 , e 4 → e [e 4 ](b 3 )
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which has the following kernel and cokernel dimensions over F 2 . q = 4k + 5 0 1 q = 4k + 4 2 1 q = 4k + 3

In the Mayer-Vietoris long exact sequence on group cohomology with F 2 -coefficients derived from the amalgamated decomposition

with respect to the maps i and j,

. . .

the above calculated dimensions yield

We identify e 4 := e i 4 + e j 4 as the class, multiplication by which yields the 4periodicity exposed in Lemma 12. Let us set the following names for the remaining classes:

2 term of the equivariant spectral sequence for Γ 0 ( √ -2) in rows q ∈ {1, 2, 3, 4}. Theorem 1 tells us that H * (SL

]); F 2 ) constitute a basis {1, x 2 , x 3 , y 3 , z 3 , s 3 , x 4 , s 4 , s 5 , s 6 } for it. Thus we get the result stated in Theorem 3. We can use our result to calculate dimension bounds for H q (GL 2 Z[ √ -2 ] 1 2 ; F 2 ), see [START_REF] Bui | Bounds for the mod 2 cohomology of GL2 Z[END_REF].