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THE DISTRIBUTION OF RATIONAL NUMBERS ON CANTOR’S

MIDDLE THIRDS SET

ALEXANDER D. RAHM, NOAM SOLOMON, TARA TRAUTHWEIN, AND BARAK WEISS

Abstract. We give a heuristic argument predicting that the number N∗(T ) of ra-
tionals p/q on Cantor’s middle thirds set C such that gcd(p, q) = 1 and q ≤ T , has
asymptotic growth O(T d+ε), for d = dim C. We also describe extensive numerical
computations supporting this heuristic. Our heuristic predicts a similar asymptotic
if C is replaced with any similar fractal with a description in terms of missing digits
in a base expansion. Interest in the growth of N∗(T ) is motivated by a problem of
Mahler on intrinsic Diophantine approximation on C.

1. Introduction

Let C denote Cantor’s middle thirds set, i.e. all numbers represented as x =∑∞
1 ai3

−i with ai = ai(x) ∈ {0, 2} for all i. Let N∗(T ) denote the number of ra-
tionals number of the form p/q, with p and q coprime, which belong to C and for which
0 < q ≤ T . Motivated by questions in Diophantine approximation, our goal will be to
understand the asymptotic growth rate of N∗(T ).

Everything we will say in the sequel will apply with minor modifications to a more
general situation in which C is the set of numbers defined by a restriction in a digital
expansion, i.e. for some integer b ≥ 3 and some proper subset F of {0, . . . , b−1} we will
let C denote the set of numbers x =

∑∞
1 aib

−i with all ai ∈ F . To simplify notation
we will stick throughout to the standard ternary set. When writing a rational as p/q
we always assume that p and q are coprime.

Fix c ∈ (0, 1), let IT denote the interval [(1− c)T, T ] and let

N(T )
def
= #

{
p

q
∈ C : q ∈ IT

}
Ñ(T )

def
= #

{
p

q
∈ C purely periodic : q ∈ IT

}
Ñ∗(T )

def
= #

{
p

q
∈ C : 0 < q ≤ T, p

q
is purely periodic

}
.

Note that these quantities depend on c but this will be suppressed from the notation.
The notations A(T ) = O(B(T )) and A(T )� B(T ) mean that A(T )/B(T ) is bounded
above by a positive constant, and A(T ) � B(T ) means that the A(T )� B(T )� A(T ).

Conjecture 1. Let d be the Hausdorff dimension of C, i.e. d = log 2/ log 3, and in the

general case, d = log |F|/ log b. For each ε > 0 we have Ñ(T ) = O(T d+ε).
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This conjecture was also made by Broderick, Fishman and Reich in [BFR]. An upper
bound N(T ) = O(T 2d) was obtained by Schleischitz in [Sch, Thm. 4.1]. Our heuristic

actually predicts a more precise upper bound for Ñ(T ), see Remark 4.1. The exponent
d is optimal in view of Proposition 3.3.

Since numbers in C are explicitly given in terms of their base 3 expansion, it is possible
to count their number as a function of the complexity of their base 3 expansions. But
this says nothing about the denominator q in reduced form; it may happen that a
rational with a complicated base 3 expansion corresponds to a reduced fraction p/q
with q small. The basic heuristic principle behind Conjecture 1, is that the two events
of having a small denominator relative to the complexity of the base 3 expansion, and
of belonging to C, are probabilistically independent. We will make this heuristic more
precise below.

Some computational evidence for Conjecture 1 is given in [BFR]. Our goal in this
paper is to present more evidence supporting it. We will prove that the conjectured

asymptotics are lower bounds for N∗(T ) and Ñ∗(T ); we will describe extensive com-
putations consistent with this conjecture; and we will discuss the heuristic motivating
Conjecture 1, exhibiting some numerical results which lend some support to this heuris-
tic.

Organization of the paper. In §2 we discuss some problems in Diophantine ap-
proximation which led us to this problem, and derive a Diophantine consequence from
Conjecture 1. In §3 we discuss basic properties of base 3 expansions, which yield lower

bounds on N∗(T ) and Ñ∗(T ). We also explain that the main quantity of interest is

Ñ(T ). In §4 we introduce a simple probabilistic model and use it to predict Ñ(T ).
Some oversimplifications in the probabilistic models lead to incorrect predictions, and
we modify the model slightly in §5 to remedy this, at the same time showing that the

revised model makes the same predictions for the growth of the expectation of Ñ(T ).
We discuss fluctuations and the relation of expectations to asymptotic behavior, in §6.
Our computational evidence for our conjectures are given throughout the paper.

Acknowledgements. A. Rahm would like to thank Gabor Wiese and the University
of Luxembourg for funding his research. Noam’s funding: To be updated. The research
of B. Weiss was supported by ISF grant 2095/15 and BSF grant 2016256.

2. Motivation and historical background

The classical problem in Diophantine approximation may be formulated as follows.
Given a decreasing function ϕ : R+ → R+ and a real number x, are there infinitely
many rationals p/q such that |x − p/q| < ϕ(q)? In case this holds one says that x is
ϕ-approximable. For some choices of x and ϕ, determining whether x is ϕ-approximable
is considered hopelessly difficult (e.g. ϕ(q) = 10−100/q2, with x = 21/3 or π); a fruitful
line of research is to fix ϕ and ask about the measure of ϕ-approximable numbers, with
respect to some measure. Some classical results in diophantine approximation are:

(Dirichlet) Every x is 1/q2-approximable.
(Khinchin) With respect to Lebesgue measure, if

∑
qϕ(q) converges then almost no x is ϕ-

approximable, and if
∑
qϕ(q) diverges then almost every x is ϕ-approximable.
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(Jarńık) The set

BA
def
=
{
x : ∃c > 0 s.t. x is not c/q2−approximable

}
has Hausdorff dimension 1, but Lebesge measure zero.

One measure to consider in place of Lebesgue measure in such statements, is the coin
tossing measure (assigning equal probability 1/2 to the digits 0,2 in base 3 expansion)
on Cantor’s ternary set C. We give a brief list of activity concerning this type of
question.

In 1984, Mahler [M] asked how well numbers in C can be approximated

(i) by rationals in R.
(ii) by rationals in C.

Question (i) can be formalized in various ways, e.g. for which functions ϕ, does C
contain ϕ-approximable numbers? For which ϕ is almost every number in C (with
respect to the natural coin-tossing measure) ϕ-approximable? for which ϕ is the set
of numbers in C which are ϕ-approximable of the same Hausdorff dimension as that of
C? There has been a lot of recent activity concerning these and similar questions, see
[W, F, LSV, Bu, SW] and the references therein.

Question (ii), which is referred to as an intrinsic approximation problem, has not
been nearly as well-studied. Broderick, Fishman and Reich [BFR] proved an analogue of
Dirichlet’s theorem for Cantor sets and other missing digit sets. Fishman and Simmons
[FS] extended the main result of [BFR] to a more general class of fractal subsets of R.
A major difficulty in intrinsic approximation problems is that there is no reasonable

understanding of the growth of the function N(T ), Ñ(T ) as described above; bounds
on these functions will yield some progress on Mahler’s question (ii). In particular,
Conjecture 1 implies (see [BFR] for the derivation):

Conjecture 2. For almost every x ∈ C, with respect to the coin-tossing measure, for
any ε > 0, there are only finitely many rationals p/q ∈ C such that∣∣∣∣x− p

q

∣∣∣∣ < 1

q1+ε
. (2.1)

It was shown in [BFR] that for each x ∈ C, there are infinitely many p/q ∈ C for

which |x− p/q| < q−1(log q)1/d. Thus the exponent in (2.1) cannot be improved.

3. Notation, basic observations, and a lower bound

The number x =
∑∞

1 ai(x)3−i is rational if and only if the sequence (ai(x))i≥1 is
eventually periodic, i.e. there are integers i0 = i0(x) ≥ 0 and ` = `(x) > 0, called
respectively the length of initial block and period, such that

ai(x) = ai+`(x), for all i > i0, (3.1)

and (3.1) does not hold for any smaller i0 or `. We say that x is purely periodic if
i0 = 0. It is elementary to verify the following (see also [BFR, Lemma 2.3]):
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Proposition 3.1. Suppose x is a rational in C, with (ai), i0 and ` as above. Then we
may write x = P/Q where

P =

i0∑
j=0

aj3
i0+`−j −

i0∑
j=0

aj3
i0−j +

∑̀
j=1

ai0+j3
`−j , and Q = 3i0(3` − 1)

(this fraction need not be reduced). In particular:

• If x is a rational in C with period ` and initial block of length i0, then there is
an integer N such that 3i0x −N is a purely periodic rational in C with period
`.
• if x = p/q is purely periodic where gcd(p, q) = 1, then q is a divisor of 3` − 1

and ` is the order of 3 in the multiplicative group (Z/qZ)×.

As mentioned above, throughout this paper, the notation x = p/q will mean that x
is a reduced rational in C, i.e. gcd(p, q) = 1. The notation x = P/Q will mean that x
is a rational in C, not necessarily reduced.

The following proposition follows from standard calculations and is left to the reader.

Proposition 3.2. Fix c, c′ ∈ (0, 1) and define Ñ(T ) and Ñ ′(T ) using c and c′ respec-

tively. Fix ε > 0. If Ñ(T ) � T d+ε then the same holds for Ñ ′(T ), N(T ), Ñ∗(T ), and
N∗(T ).

Proposition 3.3. There is c1 > 0 such that for all T > 3 we have Ñ∗(T ) ≥ T d/2 and
N∗(T ) ≥ c1 log(T )T d.

Proof. Let ` = blog3 T c ≥ 1, i.e. T ∈ [3`, 3`+1]. There are 2` purely periodic Cantor
rationals of the form P/Q with Q = 3` − 1. Bringing them to reduced form, they are
of the form p/q with q ≤ T . In particular

Ñ∗(T ) ≥ 2` =
(

3`+1
)d
/2 ≥ T d/2.

Similarly any rational of the form P/Q where Q = 3i0(3`−i0 − 1) will contribute to
N∗(T ). For each such Q, there are 2`−i0 possibilities for the digits in the periodic part
of P/Q, and 2i0 for the digits in the initial block. An exercise involving the inclu-
sion/exclusion principle (which we omit), implies that the repetition in this counting is
negligible, i.e., up to a constant, the number of distinct rationals P/Q written in this
form is at least ` 2`. This proves the claim. �

4. The heuristic

In this section we justify an upper bound of the form Ñ(T ) = O(T d+ε). Our approach
is to assign to each reduced rational p/q a probability that it belongs to C, and bound

the expectation of the random variable Ñ(T ) with respect to this probability. Let
Q = 3` − 1 and consider the rationals P/Q in the interval [0, 1]. There are 3` such
rationals, and of these, 2` belong to C. By Proposition 3.1, they are precisely the purely
periodic Cantor rationals with period dividing `. That is, fixing Q, the proportion of

rationals P/Q ∈ [0, 1] which belong to C is
(

2
3

)`
.
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Motivated by this we define our probabilistic model. By Proposition 3.1, p/q ∈ C is
purely periodic if and only if 3 does not divide q. For each rational p/q ∈ [0, 1], with q
not divisible by 3, our model stipulates:

(*) The probability that p/q ∈ C is
(

2
3

)`
, where ` = `(q) is the smallest number for

which Q = 3` − 1 is divisible by q; the events p/q ∈ C are completely independent.

Note that ` is the order of 3 in the multiplicative group Cq
def
= (Z/qZ)×. Let φ(q) =

#Cq be the Euler number of q. We may take representatives of elements of Cq to be
the integers p between 0 and q − 1 coprime to q, so we find that the expected number

of p/q in C with fixed denominator q is φ(q)
(

2
3

)`(q)
. Thus:

E
(
Ñ(T )

)
=
∑
q∈IT

φ(q)

(
2

3

)`(q)

≤
∑
q∈IT

T

(
2

3

)`(q)

= T
∑

`≥log3 T+c′

#L(`, T )

(
2

3

)`
,

(4.1)

where

L(`, T ) = {q ∈ IT : `(q) = `} and c′ = log3(1− c).
We now need to bound the terms #L(`, T ). First we choose λ = 2−d

1−d . For ` ≥ λ log3 T

we can use the trivial bound #L(`, T ) ≤ T , since

T 2
∑

`≥λ log3 T

(
2

3

)`
� T 2−λ+λd = T d.

So it only remains to show

T

λ log3 T∑
`=log3 T+c′

#L(`, T )

(
2

3

)`
= O(T d+ε). (4.2)

For ` ∈ [log3 T + c′, λ log3 T ], we use the obvious inequality #L(`, T ) ≤ τ
(
3` − 1

)
,

where τ(n) denotes the number of divisors of n. It is well-known that

τ(n) ≤ 2(1+o(1)) logn/ log logn. (4.3)

In our situation we have 3` − 1 ≤ T λ, so

τ
(

3` − 1
)
≤ 22λ log T/ log log T = T 2λ/ log log T ,

implying

T

λ log3 T∑
`=log3 T+c′

#L(`, T )

(
2

3

)`
≤ Tλ log3 TT

2λ/ log log T

(
2

3

)log3 T+c′

� log T T d+2λ/ log log T .
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from which (4.2) follows.

Remark 4.1. 1. In (4.1) we used the inequality φ(q) ≤ q ≤ T . But in fact it is
well-known that on average φ(q) � q, so we actually expect

Ñ(T ) � T
λ log3 T∑

`=log3 T+c′

#L(`, T )

(
2

3

)`
. (4.4)

2. Our arguments show that the right hand side of (4.4) behaves like O(log T T d+2λ/ log log T ).
In estimating the cardinality of L(`, T ) we used the bound (4.3) which is optimal for a
general n. However it may be that for numbers of the form n = 3` − 1 a better bound
exists, see [E] for related results. If so then our heuristic would predict a better bound

for Ñ(T ).

5. A revised model

The heuristic above relied on the basic statement (*). However this assumption leads
to some clearly incorrect predictions, namely:

(i) (Primitive words) In deriving (*) we calculated the frequency of purely periodic
rationals with period dividing `, belonging to C. It would have been more precise
to count the purely periodic rationals with period exactly `, belonging to C. By
Proposition 3.1, rationals with period exactly ` correspond to primitive words
w in the alphabet {0, 1, 2} of length `, i.e. those w for which there is no proper
divisor k of ` such that w is a concatenation of a identical words of length k. A
standard application of the inclusion/exclusion principle gives that the number
of primitive words of length ` from an alphabet of size a is

m(`, a)
def
=
∑
d|`

µ

(
`

d

)
ad, (5.1)

where µ is the Möbius function.
(ii) (Multiples of `) Fix q and let

Nq = #{p : p/q ∈ C}, (5.2)

and let ` = `(q). Since C is invariant under multiplication by 3 mod 1, whenever
p/q ∈ C we also have p′/q ∈ C, where p′ = 3p mod 1. This means that the set
{p : p/q ∈ C} consists of orbits for the action of 3 on Cq, and in particular, `
divides Nq.

(iii) (Divisibility by 2) Let Q = 3`−1. Our model predicts that there are φ(Q)(2/3)`

rationals in C with denominator Q, coming from P ∈ {0, . . . , Q− 1} such that
P/Q belongs to C and gcd(P,Q) = 1. However Q is even and if P/Q is in C
then so is P , since it may be written in base 3 using the letters 0 and 2 only.
That is, the actual number is zero. A similar observation holds for any q, which
divides Q = 3` − 1 but does not divide Q/2.

One may define a revised model as follows: for each q, let H be the group generated
by 3 in Cq. By observation (ii), for each coset X ∈ Cq/H, all number of the form
p/q, p ∈ X simultaneously belong or do not belong to C; if they all do, we will write
X ∈ C. With this notation, our revised model stipulates that:
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(**) Suppose q is not divisible by 3 and divides (3` − 1)/2, where ` = `(q). For each

X ∈ Cq/H, the probability that X ∈ C is m(`,2)
m̄(`,3) , where m(`, a) is defined by (5.1) and

m̄(`, a) is the set of primitive words of length ` in the symbols {0, 1, 2} defining even
numbers.

Note that our choice of probability takes into account (i) and (iii). It is not hard to
show that

m(`, 2)/m̄(`, 3)

(2/3)`
→`→∞ 2,

and using this, that the arguments given in §4 also apply to the second model, yielding
the same prediction. That is, model (**) also implies Conjecture 1. Moreover, when
` is prime, it is easy to check using (5.1) and the definition of m̄ that the difference

between 2
(

2
3

)`
and m(`,2)

m̄(`,3) is negligible. Nevertheless, when testing our heuristic, there

will be a difference between models (*) and (**). For sufficiently small values of q we
have computed the actual values of Nq as defined in (5.2), and one may compare them
to the number

MLO(q)
def
= round

(
φ(q) ·m(`, 2)

m̄(`, 3)

)
. (5.3)

See Figures 1 and 2.
The notation round(x) stand for the closest integer to x, and the letters MLO stand

for most likely outcome, since there is no other number more likely to occur as the value
of Nq, under probabilistic model (**).

Using inclusion/exclusion and Möbius inversion, one can show (for more details see
[T]) that the number of even (as numbers in base 3) primitive words of length ` with
symbols in the alphabet {0, 1, ..., a− 1} is∑

d|`, `
d

even

µ

(
`

d

)
ad +

∑
d|`, `

d
odd

µ

(
`

d

)⌈
ad

2

⌉
.

As a consequence one obtains a simple formula for m̄(`, 3). This allows us to compute
MLO(q) and hence to plot Figures 1 and 2. As can be seen in the Figures, within
the range of our database of Cantor rationals, both models (*) and (**) give good
approximations for the number of purely periodic Cantor rationals. The fit is not
perfect though, and the plots reveal other interesting features. We try to explain some
of these below.

6. Remarks on fluctuations, Bourgain’s theorem, and symmetries

6.1. Deviations from the mean. An obvious objection to the line of reasoning pre-

sented above, is that our prediction for Ñ(T ) is based on bounds on its expectation.

That is, we have shown that our heuristic implies E(Ñ(T )) = O(T d+ε), but in order to

justify Ñ(T ) = O(T d+ε) one needs additional arguments, which we now briefly indicate.

If for some ε > 0 there is an unbounded sequence of T for which Ñ(T ) ≥ T d+ε,
then (possibly modifying the constants ε and c) we can take this to be a subsequence
of the numbers in the form Tk = (1 + c)k. For each k we let Xk denote the random
variable, in model (*), counting the number of p/q ∈ C with q ∈ ITk . We will show
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57 114 228 456 912 1824 3648 7296 14592 29184 58368

101

102

103

T

Ñ(T )

F (T )

M(T )

Figure 1. The summed number of purely periodic Cantor ratio-

nals Ñ(T ), its approximation F (T ) :=
∑

q∈IT
3-q

round
((

2
3

)`(q) · 2 · φ(q)
)

from model (*), and its approximation M(T ) :=
∑
q∈IT

3-q| 3
`(q)−1

2

MLO(q) from

model (**), where IT := [(1−c)T, T ] for c = 1
2 . More data points shown

in Figure 3.

qn `(qn)/ log3 qn
q0 = 3 1.0
q1 = 30 1.292030029884618
q2 = 84 1.4876881693076203
q3 = 146 2.6453427135663814
q4 = 386 2.951356044207975

Table 1. Denominators qn such that for all q < qn+1 admitting Cantor
rationals of denominator q, `(q)/ log3 q ≤ `(qn)/ log3 qn. For all q < 310

admitting Cantor rationals of denominator q, we have `(q)/ log3 q ≤
`(q4)/ log3 q4.

that the probability that Xk exceeds T d+ε
k is O(T−εk ), and hence is summable; from

this it follows by Borel-Cantelli that the probability that for infinitely many k we have
Xk ≥ T d+ε

k is zero.
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57 114 228 456 912 1824 3648 7296 14592 29184 58368

0.5

1

1.5

2

2.5

T

M(T )/Ñ(T )

F (T )/Ñ(T )

Figure 2. Ratios M(T )

Ñ(T )
and F (T )

Ñ(T )
for c = 1

2 . Our heuristic predicts that

this graph tends to 1 at infinity.

r q = 3r + 1 Nq MLO(q)
Nq

MLO(q)

(
2
3

)r Nq

MLO(q)

4 82 16 3 5.333 1.053
5 244 30 4 7.5 0.988
6 730 48 4 12 1.053
7 2188 126 7 18 1.053
8 6562 240 9 26.667 1.04
9 19684 414 11 37.636 0.979
10 59050 820 14 58.571 1.016
11 177148 2024 23 88 1.017
12 531442 4008 31 129.29 0.996
13 1594324 8190 42 195 1.002

Table 2. The numbers q = 3r + 1, r = 4, . . . , 13 where our heuristic
gives poor predictions. When revising the prediction by a factor of
(3/2)r, which is the factor taking into account a symmetry ω 7→ ωω̄, we
obtain a much better prediction.

We continue to denote by c′, λ the constants as in §4, and write T = Tk to simplify

notation. Let X
(1)
k (respectively, X

(2)
k ) be the number of p/q contributing to Xk with
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50 100 150 250 400 750 1100 22003300 66009850 29550

102

103

T

M(T )

N(T )

(a) c = 0.8

50 100 150 250 400 750 1100 22003300 66009850 29550

102

103

T

M(T )

N(T )

(b) c = 0.75

50 100 150 250 400 750 1100 22003300 66009850 29550

101

102

103

T

M(T )

N(T )

(c) c = 0.5

50 100 150 250 400 750 1100 22003300 66009850 29550

101

102

103

T

M(T )

N(T )

(d) c = 0.25

(33−1)
2

34−1
2

(35−1)
2

(36−1)
2

(37−1)
2

(38−1)
2

(39−1)
2

(310−1)
2

0

200

400

{T}

M(T )

N(T )

(e) c = 0

Figure 3. For different values of c (which determine the intervals
IT := [(1 − c)T, T ]), we plot the summed number of purely periodic

Cantor rationals Ñ(T ) and its approximation M(T ) from model (**).
As predicted in §6.3, there are more fluctuations for smaller c.

q `(q) Nq MLO(q)
Nq

MLO(q)

12962 24 72 1 72
14965 24 48 1 48
29848 24 48 1 48
84253 24 96 9 10.391
129620 24 48 6 8
181468 24 96 9 10.391
239440 24 96 11 8.727
259240 24 48 12 4
298480 24 96 11 8.727
531442 24 4008 31 129.29
589771 24 336 55 6.109
4731130 24 960 222 4.324
21257680 24 4176 985 4.24

Table 3. All values of q with `(q) = 24 for which our heuristic makes
a prediction which is incorrect by a factor of 4 or more. Note that in all
of these examples, Nq > MLO(q). At least three, and probably all, of
the entries in the table are related to the symmetries discussed in §6.4.
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q `(q) Nq MLO(q)
Nq

MLO(q)

23 11 0 0 −
47 23 0 0 −
683 31 0 0 −
1597 19 0 1 0
1871 17 0 4 0
3851 11 88 89 0.989
28537 29 0 0 −
34511 17 68 70 0.971
102673 31 0 1 0
363889 19 304 328 0.927
59 · 28537 29 0 26 0
4404047 31 62 31 2
20381027 29 232 319 0.727
1001523179 23 178480 178481 0.999994

Table 4. Some numbers q < 3`(q)−1
2 for which `(q) is a prime, including

all such q with 11 ≤ `(q) ≤ 23. In this case, symmetries are impossible
and our heuristic works well for each individual q.

`(q) > λ log3 T (respectively, log3 T + c′ ≤ `(q) ≤ λ log3 q). Let `0 = λ log3 T , which

is a lower bound for `(q) when p/q contributes to X
(1)
k . Since there are fewer than

T 2 rationals p/q with q ∈ IT , the probability that X
(1)
k ≥ T d+ε is smaller than the

probability that a binomial random variable with probability

p =

(
2

3

)`0
= T (d−1)λ

and T 2 trials we will have T d+ε successes. By the Markov inequality, this probability

is bounded above by T 2+(d−1)λ−d−ε = T−ε. The proof for X
(2)
k is similar, again using

the Markov inequality and the bounds used in the proof of (4.2).

6.2. Large ` and Bourgain’s theorem. To highlight the sensitivity of Ñ(T ) to
fluctuations, consider the expression

̂̀(q) =

{
`(q) Nq 6= 0

0 otherwise
(with Nq as in (5.2));

that is, ̂̀(q) is the order of 3 in (Z/qZ)× when there are rationals with denominator q

in C, and zero otherwise. Clearly the nonzero values of ̂̀(q) range between log3 q and q.

If one could prove that ̂̀(q)� log3 q one would obtain a simple proof of Conjecture 1.
Note that the heuristic behind Artin’s conjecture (see [Mo]) predicts that there are
infinitely many q for which `(q)� q, so that this may appear at first sight to be wildly
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optimistic. However our restriction Nq 6= 0 is a stringent one. In fact, our computations

found that for all 3 ≤ q < 310, ̂̀(q) < 3 log3 q (see Table 1).

On the other hand, by observation (ii), a large value of ̂̀(q) would make a large

contribution to Ñ(T ) when q ∈ IT . For example if there were infinitely many q for whicĥ̀(q) > qd+ε, then their contribution alone would yield a contradiction to Conjecture

1. However, a difficult result of Bourgain [B] implies that for any δ > 0, ̂̀(q) � qδ.
Bourgain’s theorem is much stronger inasmuch as it implies that the cosets of the
subgroup H equidistribute in the interval [0, 1] when `(q) > qδ, while to obtain the
upper bound above, one only needs to know that if `(q) > qδ, then any coset for H
contains at least one point in the interval (1/3, 2/3). It would be of interest to obtain

better upper bounds on ̂̀(q) than those implied by Bourgain’s theorem.

6.3. Additional sources of fluctuations. It is easy to show that (4.4) predicts a

lower bound Ñ(T )� T d. However we do not expect a precise asymptotic in the form

Ñ(T ) ∼ cT d, that is, we do not expect the limit of Ñ(T )/T d to exist. There are
two reasons for fluctuations in this expression. First consider the numbers of the form
q = (3` − 1)/2, for which `(q) = `. If c < 2/3, depending on the choice of T , the range
IT may or may not contain one such number. In case it does, this contributes a term
of order (2/3)` � T d to the sum, which would contribute to the main term. Thus we
have fluctuations according as the window IT does or does not contain such q, or for
general c ∈ (0, 1), depending on the number of such q in the interval IT . See Figure 3.

Although these fluctuations would contradict a precise asymptotic Ñ(T ) ∼ cT d, they

do not preclude the weaker statement Ñ(T ) � T d. A potentially more serious source
of fluctuations in (4.4) is the number #L(`, T ), which could fluctuate considerably
due to fluctuations in the numbers τ(3` − 1). It would be interesting to determine the
asymptotic behavior of the right hand side of (4.4).

6.4. Symmetries. Heuristics (*) and (**) can also be used to make predictions for
the number Nq of Cantor rationals with a fixed denominator q. However in this regime,
our computations reveal many values of q for which the heuristic gives inaccurate
predictions. Some of these are shown in Tables 2 and 3. The numbers in Table 2 are all
of the form 3r + 1, and in Table 3 we show all numbers q for which `(q) = 24 and the
prediction is inaccurate by a factor of 4 or more. We will consider a possible explanation
for these inaccuracies by introducing a (non-rigorous) notion of ‘symmetries’ in base 3
expansion.

The identity 32r−1
2 = (3r−1)(3r+1)

2 easily implies the following (we leave details to the
reader): suppose a purely periodic rational in base 3 expansion has repeating block
ω ∈ {0, 2}r, where r is the length of ω, and ω̄ is the block obtained from ω by replacing
occurences of 0 with 2 and 2 with 0. Then the word ωω̄ of length 2r obtained by
concatenating ω, ω̄ defines (via an infinite base 3 expansion 0.ωω̄ωω̄ · · · ) a number in
C whose denominator divides 3r + 1. This implies that any p

3r−1 ∈ C gives rise to some
p′

3r+1 ∈ C (and in fact, by observation (ii) in §5, to the ×3-orbit of this word, which

typically contains 2r numbers). It can be deduced that heuristic (**) underestimates
numbers p′/q′ with q′ dividing 3r+1, arising in this way, by a factor of approximately
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r qr Nqr Xr Yr Zr Yr + MLO(qr)

1 13 6 6 6 6 13
2 91 12 18 14 12 27
3 757 54 54 54 54 93
4 6643 120 156 122 120 202
5 59293 450 420 388 390 638
6 532171 1368 1062 978 1008 1641
7 4785157 4158 2562 2365 2436 4136
8 43053283 9744 5976 4663 4560 8654
9 387440173 38988 13608 13450 13500 26931
10 3486843451 91440 30450 23224 23520 50961

Table 5. The numbers qr = 32r + 3r + 1 with the contribution of the
symmetries of the form ω 7→ ωω̄0 and ω 7→ ωω̄2. The number Xr counts

all strings of length 3r of the specified form, Yr =
⌊
Xr · φ(qr)

qr

⌋
, and Zr

is the actual number of Cantor rationals with denominator qr of this
special form.

(3/2)r. The revised heuristic is borne out by Table 2, where the last column corrects
heuristic (**) by this factor, giving a good fit with the data.

The mapping ω 7→ ωω̄ used above is for us an example of a symmetry in base 3.
Here is another example. Suppose ω, ω̄ ∈ {0, 2}r are as in the previous paragraph, and
suppose 0 and 2 denote strings of length r consisting only of the digit 0 (respectively
2). Then one may check, this time using the identity 33r − 1 = (3r − 1)(32r + 3r + 1),
that repeating blocks ωω̄0 and ωω̄2 give numbers in C whose denominator divides
32r + 3r + 1. For example, taking r = 7, we have q = 314 + 37 + 1 = 4785157, our
heuristic (**) gives MLO(q) = 1771, and our computer program finds Nq = 4158, which
is a poor fit. The number of strings of the form ωω̄0 and ωω̄2, along with all their
cyclic permutations (taking into account observation (ii) in §5) is 2562. Some of these
give a subset of the ones already considered in heuristic (**), so taking this symmetry

into account we should expect 2562 · φ(q)
q = 2365 ≤ Nq. This indeed gives a better

(albeit still not very precise) prediction. We suspect that there are more symmetries
contributing to the numbers Nq and hope to return to this issue in future work. In
Table 5 we have tabulated the numbers qr for r = 2, . . . , 10, along with the numbers of
strings of the above form multiplied by φ(q)/q, and compared this prediction with the
actual number of strings of this form which are reduced rationals with denominator qr.

When ` = kr for k, r ∈ N, k ≥ 2, we can often make a similar construction of
a repeating block of length ` which is composed of k sub-blocks of size r (in the
preceding two paragraphs we gave examples with k = 2, 3). The result will be that for
the numbers

q = 3(k−1)r + 3(k−2)r + · · ·+ 3r + 1,
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Nq will be significantly larger than predicted by our heuristic. The same will be true
for large divisors q′ of such q. Thus if ` has many divisors, there will be many values
of q for which our predictions will be poor. In all of them we expect our heuristic to
give a number which is smaller than the correct value, and we do not expect such very
poor predictions to occur when ` is prime. These two expectations are borne out in
Tables 3 and 4 below. We invite the reader to try to find explanations for the numbers
appearing in Table 3; note that we have explained the appearance of 531442 using a
symmetry ω 7→ ωω̄, and that 589771 and 84253 are large divisors of 316 + 38 + 1 and
can thus be explained using the symmetries ω 7→ ωω̄0, ω 7→ ωω̄2.

Appendix A. Computing the Cantor rationals of given denominator

In this appendix, we give an algorithm to compute the set of rational numbers in the
Cantor set of given denominator q, namely the Cantor rationals of reduced form p

q . It

is stated in Algorithm 1 below, and has been implemented by the authors in Pari/GP.
We denote by `(q) the order of the element 3 in the group of multiplicative units in the
ring Z/qZ with q elements.

Proposition A.1. The set computed by algorithm 1 contains all the Cantor rationals
of denominator q for its reduced form. This algorithm terminates within finite time.

Proof.

• The period length of p
q in the ternary system is given by `(q′). Hence, the

finite sequence a of ternary digits is precisely the periodical sequence in p
q .

Furthermore,

s(3`(q
′) − 1) + a

(3`(q′) − 1)3t
=
p

q
.

So, the sequence s is precisely the sequence of ternary digits preceding the
periodical part in the ternary expansion of p

q . By the elementary ternary digits

property of the Cantor set, algorithm 1 decides if p
q is a Cantor rational. The

mask M allows it to check all suitable fractions p
q . Here, and for establishing

the passlist, we make use of the well-known symmetry of the Cantor set: If x
is an element of the Cantor set, then the same holds for (1 − x), x

3 , and —
provided that it is in the unit interval — 3x.
• The loop in algorithm 1 consists of (q − 1) repetitions, which contain a finite

number of finite-time steps.

�

Remark A.2. • The mask M can be omitted and a coprimality check for (p, q)
inserted, to obtain a simpler algorithm which is mathematically equivalent to
algorithm 1. The difference lies in the efficiency: In fact, the mask M is a
powerful tool to reduce the time needed to carry out the algorithm, minimizing
the number of iterations of most expensive steps, which grows fast with q.
• Even more important for the efficiency is the sub-algorithm testing the belonging

of the ternary digits to the set {0, 2}, because the numbers to be tested are
incredibly great integers.
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Algorithm 1 Computation of the Cantor rationals of denominator q

Input: A natural number q.
Output: The set of Cantor rationals of reduced form p

q .

Carry out the prime decomposition of q.
Create a mask M as the set of multiples of the primes in q satisfying that the
multiples are strictly smaller than q.
Denote by t the multiplicity of 3 in the prime decomposition of q.
Let q′ := q

3t .
Compute `(q′) := order of 3 in the multiplicative group of the ring Z/q′Z.
Initialize the passlist as an empty list.
for p running from 1 through q − 1, do

if p is not an element of the mask M or the passlist, then
Let T := p

q (3`(q
′) − 1)3t.

Let A := T mod (3`(q
′) − 1).

if A 6= 0 mod (3`(q
′) − 1), then

Let a be the lift of A to {1, . . . , 3`(q′) − 2}ternary.
if the digits of a are in {0, 2}, then

Let s :=
(

T−a
3`(q
′)−1

)
ternary

.

if the digits of s are in {0, 2}, then
The fraction p

q is a Cantor rational.

Record it into the set of Cantor rationals of denominator q.
Add 3-power multiples (if q 6= 0 mod 3) of p
and their reflections to the passlist.

else
No 3-power multiples of p

q are Cantor rationals.

Add 3-power multiples of p and their reflections to the mask M .
end if

end if
else

if the digits of
(

T
3`(q
′)−1

)
ternary

or
(

T
3`(q
′)−1
− 1
)

ternary
are in {0, 2}, then

The fraction p
q is a Cantor rational.

Record it into the set of Cantor rationals of denominator q.
Add 3-power multiplesif 3 - q of p and their reflections to the passlist.

else
No 3-power multiples of p

q are Cantor rationals.

Add 3-power multiples of p and their reflections to the mask M .
end if

end if
end if

end for
Output the rationals p

q for p in the passlist.
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