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Abstract—In typical applications, chromatic indices are 

calculated as linear combinations of the normalized r-, g- and b-

channels and used as features for a later classification based on 

chromatic appearance. But the variety of indices used in the 
literature is very limited. Furthermore is the choice of which index 

to use justified either empirically, based on false mathematical 

assumptions or not justified at all. The reason for the lack of 

mathematical justification is that so far no formal definition of 

chromatic indices existed. Such a definition is provided in this 
paper. An experimental classification with 180 different index 

combinations shows that the index choice has a significant impact 

on the classification. The results stand in sharp contrast to the very 

limited variety of indices used in the literature. The results imply 

the need for deterministic methods to estimate ideal indices for a 
given application, for which we hope the provided formalization 

might be useful. 

Keywords—color space theory, normalized rgb color space, 

chromatic indices, color object classification, color feature vectors 

I.  INTRODUCTION 

While the RGB color model is based on the human 

biological processing of color in the retina, the HS color 

model is based on the human color perception [1]. The 

normalized rgb color space combines both properties by 

separating achromatic from chromatic information (perceptual 

model), while preserving the proportional relations of the 

entries of the original RGB data (biological model). In 

computer vision, the normalization of RGB vectors is often 

used as an intermediate step, followed by the creation of 

chromatic indices described as linear combinations of the 

normalized color channels r, g and b. Applications comprise 

for example vehicle color recognition [2], food inspection [3], 

[4], skin detection [5]-[7], color texture analysis [8] or object 

tracking [9].  

More generally, chromatic indices are often used as 
features for object, image or image region classification. But 

the theoretically unlimited possibilities of chromatic index 

generation are only poorly exploited. By far the most used 
indices are the pure r- and g-channel, as for example for skin 

detection in [5]-[7] and [10]-[12]. The very same two indices 
are used in [2] for vehicle color recognition, in [3] for the 

classification of pizza toppings, in [13] for building 
recognition, in [8] and [14] for color-texture analysis (artificial 

image as well as real scenes comprising outdoor and indoor), in 

[9] for object tracking (civil and military vehicles), in [15] for 
image segmentation (artificial images and real scenes) or in 

[16] for image region recognition (real scenes). Even though in 
many of the cited papers , features of other color models or 

other feature types such as shape or greylevel gradients are 

added, the use of the same chromatic indices for objects, 
images or image regions with a completely different data 

distribution contradicts sharply the general consensus in the 
domain of classification that “A key ingredient in the design of 

visual object classification systems is the identification of 
relevant class specific aspects […]“ [17]. It is highly unlikely 

that the same two chromatic indices r and g correlate ideally 
with every single one of all the mentioned objects, images or 

image regions in means of their chromatic appearance. This 

hypothesis is bolstered by publications in which indeed 
application specific indices are used, such as for example the 

‘excessive green index’ (2g-r-b) [18] or the ‘excessive red 
index’ (1.4r-g, or rather excessive green – excessive red = g-

2.4r-b) [19] for plant recognition or the ‘opposed’ index r-b for 
outdoor scene recognition under consideration of season and 

illumination change [20]. The main question is accordingly, 

which is the ideal index or which are the ideal indices for a 
given application? So far, the indices used in the literature are 

mostly applied based on empirical/experimental justifications 
[7], [12], [18]-[20], false mathematical assumptions [3], [5], 

[16], [21] (will be explained in section IV) or with no 
justification at all [2], [8], [9], [14]. This does not necessarily 

mean that the used indices are not ideal, nor is it meant as a 

critic; the problem is that, so far, there is no mathematical 
method to determine an ideal chromatic index for a given 

application. One reason for the lack of mathematical 
justification is certainly that no formal method for a consistent 

chromatic index generation exists. After briefly introducing the 
concept of RGB vector normalization in section II, such a 

formalization of chromatic index generation will be developed 
in section III. It will be shown that any possible chromatic 

index described by a linear combination of the chromatic 

channels r, g and b can be described by a single parameter α 
that corresponds to the perceptual chromatic parameter Hue. 

The formalization implies that infinite chromatic indices can be 
generated. To evaluate if and to which degree different indices 

impact on color object classification, an experimental 
classification with 180 different index constellations was 



applied to the ETH80 cropped close image database [22]. After 
briefly introducing histogram binning of chromatic indices in 

section IV (along with a clarification of a common 

misinterpretation of chromatic channel redundancy), the 
experiment methodology is explained in section V. Results are 

presented and discussed in section VI, followed by the 
conclusion in section VII 

II. THE NORMALIZED RGB COLOR SPACE 

In the definition of the HS color spaces as proposed by 

Joblove and Greenberg [23], Hue and Saturation of an RGB 

vector do not change when shifted along a line through origin 

and the normal vector itself. A separation of achromatic and 

chromatic components in this definition can hence be reached 

by normalizing an RGB vector with the sum of its entries as to 

[
𝑟
𝑔
𝑏
] = [

𝑅
𝐺
𝐵

]/(𝑅 + 𝐺 + 𝐵) . ( 1 ) 

The normalization results in a shift of an RGB vector along 

a line through origin and the vector itself to a plane with 

normal [1 1 1] going through point [1/3 1/3 1/3] ( Figure 1). 

The plane is cut by the borders of the RGB cube into an 

equilateral triangle, often referred to as chromatic triangle or 

Maxwell triangle [24]. The normalized rgb vectors contain all 

chromatic information in the definition of the HS spaces, 

while the proportional relation of its entries, one of the basic 

concepts of the RGB color model, is preserved. 

The projection of RGB vectors on a single plane results in a 

dimensionality reduction which is in the literature typically 

exploited by projecting the Maxwell triangle to the RG-plane 

[24]. In this paper, the Maxwell triangle is rotated as shown in 

Figure 2; the coordinates of the rotated rgb vectors can be 

obtained by conversion from Barycentric to Euclidian 

coordinates as to 

[
𝑥
𝑦
] = √2 [

𝑔 − 𝑟

√3
2

3
− 𝑟 − 𝑔

] . ( 2 ) 

All following subjects can be derived either from the RGB 

space, the projected Maxwell triangle or the rotated one. In 

this paper, the formalization of chromatic indices of the next 

section will be done within the RGB geometry to illustrate the 

geometrical relation between RGB and normalized rgb space. 

As in the authors’ opinion the relation between RGB space 

and rotated Maxwell triangle are more intuitive than between 

RGB space and projected Maxwell triangle (mostly because of 

the preservation of the threefold rotational symmetry around 

the achromatic axis in regards of the space topology), the 

former will be used for illustration of mathematical properties 

within the figures of the remaining sections. 
 

III. FORMALIZATION OF CHROMAT IC INDICES IN THE 

NORMALIZED RGB COLOR SPACE 

All chromatic indices described as linear combinations of 

normalized rgb color channels can be seen as dot product of a 

normalized rgb vector and a 3-dimensional vector: 

𝑟 = [
1
0
0

] ∙ [
𝑟
𝑔
𝑏
] ;  1.4𝑟 − 𝑔 = [

1.4
−1
0

] ∙ [
𝑟
𝑔
𝑏
] . ( 3 ) 

 

Hence, each index can be seen as a scaled distance 

measurement between a normalized rgb vector and a plane 

with a normal described by the chromatic index going through 

point [0 0 0] (scaled as the indices  found in the literature are 

usually not normalized by its l2-norm). As the normalized rgb 

vectors lie all on a plane (the Maxwell triangle), an equivalent 

distance measurement to a given index can be done with a 

transformed index described by a vector whose element sum is 

zero:  

For an arbitrary chromatic index described by a vector p, the 

 
Figure 2: Normalized rgb vectors (all 6 permutations of [10 15 20] projected to the Maxwell triangle) in the RGB space (left), their “classical” 2D 

representation in the RG-plane (middle) and in the rotated Maxwell triangle (right).  

 
Figure 1: Normalizing RGB vectors to reduce illumination information by 

projecting them to the Maxwell triangle. 



scaled distance d, as described above, can be written as dot 

product between vector p and the normalized rgb vector: 

𝑑 = [

𝑝1

𝑝2

𝑝3

] ∙ [
𝑟
𝑔
𝑏
] . ( 4 ) 

Transforming vector p so that the sum of its entries equals 

zero means shifting it to a plane through origin with normal 

 [1 1 1]. The so obtained scaled distance d2 is 

𝑑2 = ([

𝑝1

𝑝2

𝑝3

] − [
1
1
1

]
(𝑝1 + 𝑝2 + 𝑝3

)

3
) ∙ [

𝑟
𝑔
𝑏
] ( 5 ) 

which can be written as  

𝑑2 = ([

𝑝1
𝑝2
𝑝3

]) ∙ [

𝑟
𝑔
𝑏
] − [

1
1
1
]
(𝑝1+ 𝑝2+ 𝑝3)

3
(𝑟 + 𝑔 + 𝑏) ( 6 ) 

As the sum of entries of a normalized rgb vector is 1, the 

relation between distance d obtained by the original index and 

distance d2 obtained by shifting the original index to a plane 

through origin with normal [1 1 1] is  

𝑑2 +
(𝑝1 + 𝑝2 + 𝑝3

)

3
= 𝑑 ( 7 ) 

This means that shifting vector p to a plane through origin 

with normal [1 1 1] results in a linear shift of the distance 

obtained with the original chromatic index. Hence, without 

loss of information, an index that is described by a linear 

combination of rgb channels can as well be described with a 

vector n whose sum of elements equals 0: 

𝑑𝑛 = 𝑛1𝑟 + 𝑛2𝑔 + 𝑛3𝑏     
with   𝑛1 + 𝑛2 + 𝑛3 = 0. 

( 8 ) 

As the sum of elements of vector n is zero, all n are 

perpendicular to the achromatic axis. If the condition that 

vector n is normalized with the l2-norm is added (a scaling that 

does not change the information content), each vector n can be 

expressed by a vector n0 rotated around the achromatic axis by 

a certain angle α. 

𝑛⃑ 𝛼 = 𝑅𝛼,[1 1 1] 𝑛⃑ 0 . ( 9 ) 

In this equation R is the 3-dimensional rotation matrix. If 

the initial vector n0 is pointing in the direction of the red-axis, 

and the rotation is counterclockwise in respect to the rotated 

Maxwell triangle, any vector nα complying with Eq.8 can be 

expressed as 

𝑛⃑ 𝛼 = √
2

3
[

(cos 𝛼)

cos(𝛼 − 120°)

cos(𝛼 + 120°)
] ( 10 ) 

which can be obtained by expanding Eq. 9 and simplifying the 

trigonometric terms.  

By inserting Eq10 in Eq. 8, any chromatic index that is 

described as a linear combination of rgb channels can now be 

expressed as 

𝑑𝛼 = √
2

3
(cos(𝛼) 𝑟 + cos(𝛼 − 120°) 𝑔

+ cos(𝛼 + 120°) 𝑏). 

( 11 ) 

With Eq. 11 any chromatic index that is described as a 

linear combination of normalized rgb channels can be 

calculated based on a single parameter α. As this parameter 

describes a rotation around the achromatic axis it corresponds 

to the human perceptual parameter Hue in the definition of the 

HS spaces [23]. 

As the sum of a normalized rgb vector is 1, Eq. 11 can be 

simplified to 

𝑑𝛼 = √
2

3
𝑐𝑜𝑠(𝛼) + √2 (𝑔 𝑠𝑖𝑛(𝛼 − 60°)

− 𝑏𝑠𝑖𝑛(𝛼 + 60°)) 

( 12 ) 

and by substituting  

𝑑𝐻,𝛼 =
𝑑𝛼

√2
+

1

√3
𝑐𝑜𝑠(𝛼) , ( 13 ) 

a scaling and a shift that does not change the information 

content of the index further to 

𝑑𝐻,𝛼 = 𝑔 𝑠𝑖𝑛(𝛼 − 60°) − 𝑏 𝑠𝑖𝑛(𝛼 + 60°). ( 14 ) 

Typically, chromatic indices are normalized to a range of 

[0, 1], which can be done by normalizing with minimum and 

maximum of the index in regards of a chosen α as to  

𝑑𝐻,𝛼 =
𝑑𝐻,𝛼 − 𝑚𝑖𝑛𝑑𝐻,𝛼

𝑚𝑎𝑥𝑑𝐻,𝛼
− 𝑚𝑖𝑛𝑑𝐻,𝛼

     ,   𝑑𝐻,𝛼  𝜖[0,1] ( 15 ) 

with minimum 𝑚𝑖𝑛𝑑𝐻,𝛼
and maximum 𝑚𝑎𝑥𝑑𝐻,𝛼

at two of the 

three vertices of the Maxwell triangle: 

𝑚𝑖𝑛𝑑𝐻,𝛼
= 𝑚𝑖𝑛(0 , 𝑠𝑖𝑛(𝛼 − 60°) , −𝑠𝑖𝑛(𝛼

+ 60°)) 
( 16 ) 

𝑚𝑎𝑥𝑑𝐻,𝛼
= 𝑚𝑎𝑥(0 , 𝑠𝑖𝑛(𝛼 − 60°) , −𝑠𝑖𝑛(𝛼

+ 60°)). 
( 17 ) 



Eqs. 15-17 give a consistent and compact description of any 

possible chromatic index in the normalized rgb space, 

meaning any linear combination of r-, g-, and b-channel. 

As a last remark before concluding this section, it is noted 

that  

𝑑𝐻,𝛼 = 1 − 𝑑𝐻,𝛼+180°  ( 18 ) 

which means that it is sufficient to choose α in a range of 

[0°,179°] which covers every possible chromatic index in the 

normalized rgb color space. 

IV. CHROMATIC INDICES USED WITH HIST OGRAMS FOR COLOR 

OBJECT CLASSIFICATION 

A very typical application of chromatic indices is their use 

in combination with histograms [2]-[9]. The additional step of 

histogram binning is added to obtain a normalized and 

comparable quantization of the chromatic properties of an 

object, image or image region [26], [27]. In the following, 

histograms in its basic form with equidistant non-overlapping 

bins are considered. Here, the data space is divided in 

equidistant regions and the data occurrence frequency in every 

region is counted. Afterwards the frequency is divided by the 

total amount of data so that data sets of different sizes can be 

compared. 

A visualization of the geometrical properties of binning 

chromatic indices in the original RGB space and in the rotated 

Maxwell triangle can be seen in Figure 3. As a chromatic 

index is a distance measurement to a plane in the original 

RGB space, histogram binning corresponds to a separation of 

the RGB space with (equidistant) planes parallel to the one 

that is defined by the chromatic index itself. Equivalently, as 

the planes intersect with the Maxwell triangle in lines, binning 

chromatic indices in the rotated Maxwell triangle corresponds 

to a separation of the triangle by parallel lines.  

A common misinterpretation of the geometrical properties 

of chromatic indices in the normalized rgb color space in 

combination with histogram binning is that channel 

redundancy implies histogram redundancy. In [3], [5], [16], 

[21] it is argued that the sum of the entries of a normalized rgb 

vector is 1. This redundancy (one channel can be expressed by 

the remaining two) is used to justify the choice of rg-binning 

instead of for example gb-binning or even rgb-binning. But 

the used histograms are 2-dimensional, which means the 

 
Figure 3: r-channel binning in 3 bins in the RGB space and in the rotated Maxwell triangle (left) and the equivalent g-channel binning (right). 

 

 
Figure 4: Schema of two different data distributions (first column and second column) resulting in the same histogram distribution wh en rg-binning is applied 

with three equidistant bins per channel (first  row) but different histogram distribution when gb-binning is applied (second row). 



redundancy applies only in a way that if for example the rg-

histogram and the gb-histogram are given, the rb-histogram 

can be derived from the distribution of the former two. 

In Figure 4 rg-binning (top row) and gb-binning (bottom 

row) is done for two different hypothetical data sets (left and 

right column). The red dots represent data points (normalized 

rgb vectors). If for the data distribution of the left column a 2-

dimensional rg-histogram with 3 bins per channel is 

calculated, 3 histogram entries are non-zero, each representing 

~33% of the data (top left). The same rg-histogram is obtained 

for the 2
nd

 data distribution (top right). For a gb-binning of the 

two data distributions instead (bottom row) two different 

histograms are obtained. This means that there is no bijective 

relation between rg and gb histograms. In other words, it does 

make a difference if rg-binning, or gb-binning, or rb-binning 

is applied.  

But more importantly, the common implication that there is 

only the choice between those three possibilities does not at all 

correspond to the nature of chromatic indices. On the contrary, 

there are infinite possibilities and they should somehow be 

considered if the hypothesis that an ideal index or an ideal 

combination of indices for a given application exists, as 

developed in the introduction, holds. This hypothesis can as 

well be expressed as assumption that changing an index in a 

given classification has an impact on the classification result. 

To explore if this assumption is valid, we applied an 

experimental classification with a brute force evaluation of the 

impact of varying indices, as will be explained in the 

following section.  

V. EXPERIMENTS 

 

To evaluate if and to which extend different chromatic 

indices have an influence on color object classification, we 

applied classical histogram comparison to the ETH-80 

cropped close image database. The database consists of 8 

different classes (Figure 5), comprising 10 different objects 

each. Each object is represented by 41 images taken under the 

same illumination conditions but from different view angles. It 

is important to note that this experimental classification has 

the purpose of proving the hypothesis that changing an index 

in a given classification has an impact on the classification 

result rather than to provide an ideal classification of the given 

ETH-80 database (such a classification would need additional 

features such as for example local shape, global shape or 

texture [22]). Implementing the here presented color-

theoretical aspects for color object classification based on 

human perception is part of our current work. 

A. Histogram Configuration 

For each segmented image of the ETH-80 database, 180 

chromatic index calculations according to Eq. 15 were applied 

with a Hue α ranging from 0° to 179° with a 1° increment. 

Each index was binned in 64 equidistant bins over the whole 

possible range of the index ([0, 1]). Out of the obtained indices 

180 histograms were calculated, each one a concatenation of 

the 1D histograms of two different indices. The difference 

between the α of two indices of each histogram was set to 

120°. This configuration was chosen, as it comprises classical 

index combinations such as 0° and 120° that corresponds to 

rg-binning, 120° and 240° (resp. its equivalent 60°) that 

corresponds to gb-binning and 240° (resp. its equivalent 60°) 

and 0° that corresponds to rb-binning, 

B. Classification 

180 separate classifications, one for each concatenated 

histogram was done. The applied procedure corresponds to  the 

methodology described in [25]. A leave-one-object-out cross 

validation was done by calculating the χ
2
 distance between a 

given image of an object and all images of all remaining 

objects. The class of the given image was determined by the 

class of the image with the minimal distance to the given one.  

VI. RESULTS AND DISCUSSION 

 

Within the following subsections the classification results 

will be analyzed on three abstraction level: the global 

classification performance, the classification performance per 

class and the classification performance per object.  

A. Global Performance 

The global classification was calculated as percentage of all 

images correctly labeled per used histogram constellation. The 

results are shown in Figure 6. The angle α on the abscissa 

describes the Hue of the first of the two chromatic indices 

used per histogram configuration (the second is α+120°). 

Firstly, it can be seen that the classification results at 0° (rg-

binning), 60° (rb-binning) and 120° (gb-binning) are not the 

same, again disproving the assumption that channel 

 
Figure 6: Example images of one object of each of the 8 ETH-80 
database classes. 

 
Figure 5: Global classification performance over all 180 different 
histogram constellations of the ETH-80 data base.  



redundancy implicates histogram redundancy in the case of 

the use of one 2D histogram. Secondly, a general variation of 

the global classification depending on the used chromatic 

indices can be observed. This variation supports the 

hypothesis that the descriptive power of chromatic indices is 

application dependent. It can be observed further, that the 

maximum global classification is at 28° (second index 188°) 

which corresponds to chromatic indices that have so far not 

been applied in standard approaches.  

B. Performance per Class 

In Figure 8 (next page), the classification performance of 

each class of the ETH-80 database is shown over all 180 

different histogram constellations. The performance was 

calculated as percentage of correctly labeled images of one 

class. Here as well, a variation of the classification can be 

observed for each one of the classes with a difference between 

minimum and maximum classification rate of up to 30% (class 

‘car’). Furthermore are the optima of different classes at 

different histogram constellations, which indicates that the 

descriptive power of chromatic indices does depend on the 

class constitution.  

C. Performance per Object 

To evaluate the classification performance per object, the 

percentage of correctly classified images of all 41 images of 

each object for all 180 histogram constellations was 

calculated. In Figure 7, the maximum (blue) and minimum 

(green) classification rate of all 180 histogram classifications 

are shown per object. For almost every object a significant 

difference between minimum and maximum classification can 

be observed, with a difference of up to 100% (within class 

‘horse’). The difference of 100% means that with a certain 

histogram constellation all 41 images of the corresponding 

object were correctly labeled, while with another one no 

image of this object was labelled correctly. 

D. Summary 

The presented results show that on every level of 

classification, the choice of chromatic indices has a significant 

impact on the obtained classification rate. A variation of 

classification accuracy can be observed over the whole range 

of used indices. The results indicate that the descriptive power 

of chromatic indices strongly depend on the data distribution 

they are applied to. These results stand in sharp contrast to the 

very limited variety of indices used in the literature. They 

stand especially in sharp contrast to the standard application of 

rg-histogram binning on different applications such as skin 

detection, car color classification, color texture classification, 

building recognition and so on, as mentioned in section I. 

Furthermore, it could be seen that the classification results of 

rg-binning, gb-binning and rb-binning are not identical, which 

stands in contrast to implications found in the literature (as 

explained in section IV).  

Generally, the results show that the potential of normalized 

rgb chromatic indices is yet not at all fully exploited. In the 

shown experiments two indices were used per classification. 

But the amount of two was only chosen to correspond to the 

standard applications of chromatic indices in the literature. So 

was the choice of the difference of 120° between two indices. 

Theoretically, the ideal number of indices and their 

geometrical relation to each other depend on the data 

distribution and have hence to be determined according to a 

specific application. Therefore, suitable deterministic methods 

have to be evaluated or developed that consider the global data 

distribution of an application as well as inter- and intraclass 

correlation aspects. 

VII. CONCLUSION 

The normalized rgb color space is an interesting space as it 

combines the RGB color model that is based on the human 

biological processing of color with the HS model that is based 

on the human perception of color. Applications of this space 

can be found in almost any domain of color object, image or 

image region classification. A typical application is to 

calculate chromatic indices that are described by linear 

combinations of the three normalized color channels r, g and 

b. But so far the variety of indices has been very limited. 

Indices found in the literature are limited to the pure channels 

r, g, and, b, the opposed indices r-g, g-b, r-b and some 

application specific feature such as ‘excessive green’ or 

‘excessive red’. Furthermore is the choice of which index to 

use justified either empirically/ experimentally, based on false 

mathematical assumptions or not justified at all. The reason 

for the lack of mathematical justification is that so far no 

formal definition of chromatic indices existed. Such a 

definition was developed in this paper. It could be shown that 

every chromatic index that is described by a linear 

combination of the normalized color channels can be 

described by a single parameter α that corresponds to the 

human perceptual parameter Hue. The formalization implies 

that theoretically infinite indices can be generated. An 

experimental histogram-based classification for 180 different 

chromatic index combinations showed that the index choice 

has a significant impact on the global classification rate, as 

well as on the classification rate of each class, each object and 

each image. These results stand in sharp contrast to the limited 

variety of indices so far used in the literature. The results show 

the need for a deterministic estimation of application-specific 

 

 
Figure 7: Minimum classification performance (green) and 
maximum performance (blue) of each of the 80 objects (10 objects 

per class) of the ETH-80 database.  



indices. The formalization of chromatic indices in this paper 

opens the possibility to evaluate or develop deterministic 

methods to find ideal indices or index combinations for a 

given application.  

 

 

 

 

 

 
Figure 8: Classification performance of each of the 8 classes of the ETH-80 database over all 180 histogram constellations. 
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