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Abstract: Since Bevis first proposed Global Positioning System (GPS) meteorology in 1992,
the precipitable water (PW) estimates retrieved from Global Navigation Satellite System (GNSS)
networks with high accuracy have been widely used in many meteorological applications. The proper
estimation of GNSS PW can be affected by the GNSS processing strategy as well as the local
geographical properties of GNSS sites. To better understand the impact of these factors, we compare
PW estimates from two nearby permanent GPS stations (THTI and FAA1) in the tropical Tahiti Island,
a basalt shield volcano located in the South Pacific, with a mean slope of 8% and a diameter of 30 km.
The altitude difference between the two stations is 86.14 m, and their horizontal distance difference is
2.56 km. In this paper, Bernese GNSS Software Version 5.2 with precise point positioning (PPP) and
Vienna mapping function 1 (VMF1) was applied to estimate the zenith tropospheric delay (ZTD),
which was compared with the International GNSS Service (IGS) Final products. The meteorological
parameters sourced from the European Center for Medium-Range Weather Forecasts (ECMWF) and
the local weighted mean temperature (Tm) model were used to estimate the GPS PW for three years
(May 2016 to April 2019). The results show that the differences of PW between two nearby GPS
stations is nearly a constant with value 1.73 mm. In our case, this difference is mainly driven by
insolation differences, the difference in altitude and the wind being only second factors.

Keywords: precipitable water; GNSS; zenith total delay; weighted mean temperature; insolation;
altitude; wind

1. Introduction

Atmospheric water vapor plays an essential role in atmospheric processes in terms of its intimate
coupling to the greenhouse effect, the formation of clouds and rainfall, the atmospheric storm systems,
the Earth’s meridional energy balance and atmospheric chemical reactions [1–3]. Precipitable water
(PW) refers to the equivalent height or liquid water, expressed in millimeters (mm), of the total
water vapor contained in an air column from the Earth’s surface to the top of the atmosphere [4].
Since Bevis et al. (1992) [5] first proposed Global Positioning System (GPS) meteorology to remote
sensing atmospheric water vapor, GPS meteorology has become an important approach for water
vapor detection with high accuracy, all-weather capability, high spatial temporal resolution, and
low costs [6–8]. With the rapid development of the current global navigation satellite systems
(GNSS) constellation, GNSS meteorology has the potential to provide precise PW values with high
temporal resolution and is indeed widely used in many meteorological applications, such as numerical
weather prediction, water vapor tomography, nowcasting, and severe weather event monitoring [9–15].
Moreover, water vapor not only contributes significantly to the opacity of the atmosphere in the
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infrared wavelengths as a greenhouse gas but is also the dominant source of phase fluctuations in
radio sciences [16,17]. The PW values can be used to make first-order predictions of the opacity of
the atmosphere, although there is little information regarding phase fluctuations. Butler (1998) made
a rough local estimate of the PW values from the measurements of surface temperature and dew
point by assuming that the water vapor is exponentially distributed in the atmosphere with respect to
attitude above a given location [18].

Several international organizations, the most active being International GNSS Service (IGS) and
European Center for Medium-Range Weather Forecasts (ECMWF) pool core GNSS stations around the
world, essentially to provide data to maintain the International Terrestrial Reference frame (ITRF) and
the Vienna mapping function 1 (VMF1) family of mapping functions (used to correct tropospheric
delays). These stations are unevenly distributed around the world, with a repartition driven by the
density of populations. Tahiti Island is an extreme case, with the THTI and FAA1 stations located
2.56 km apart and surrounded by nearly unlimited seas. The nearest IGS station is located on the
Mangareva Island, at a distance of 1500 km from Papeete. As a result, these isolated stations have
a heavy weight on worldwide networks, as they constrain geophysical models in a large radius. As we
have the chance in Tahiti to have two nearly collocated but also isolated stations, it then makes sense to
study the differences in their time series, in order to assess the errors that can be induced in global
models by the data from such isolated stations.

Geomorphological and climate settings are described in Section 2. In Section 3, GPS settings of the
THTI and FAA1 IGS stations are given. In Section 4, the estimation of GPS PW is presented in detail.
The exponential distribution of PW with altitude is given in Section 5. The results and discussion are
presented in Section 6, which includes the results of zenith total delay (ZTD), zenith non-hydrostatic
(wet) delay (ZWD), PW, and their statistical analysis; the comparison between GPS PW and the PW
values based on an exponential distribution with respect to attitude; and the correlation between ZWD,
PW, and wind velocity, and the influence of local topography. Conclusions are presented in Section 7.

2. Geomorphological and Climate Setting

The two GPS stations of our study are located in the tropical Tahiti Island (see Figure 1), the main
island of a swarm of 118 small islands in the South Pacific hemisphere. Tahiti is an extinct volcanic
structure joining two shield volcanoes (Tahiti Nui and Tahiti Iti) separated by an isthmus. Tahiti Nui
and Tahiti Iti are young in the geological sense. They were created on the ocean floor by a mantellic
plume about 5 million years ago, and all volcanic activity ceased on Tahiti Nui about 30,000 years ago.
After the peak of volcanic activity, the two sub-islands collapsed, creating a radial, highly dissected
by erosion, network of valleys centered on the calderas. The mean slope of the volcanoes is around
8%, and the slopes of the flanks of the valleys can reach 40% to 70% [19] (Figure 1). The climate in
Tahiti is very humid (meaning high PW values) [20] and characterized by dry (from May to October)
and wet seasons (from November to April) that are governed by the South Pacific Convergence Zone
(SPCZ) on the large scale and by the topography of a high volcanic island on the orographic scale [21].
The two GPS stations of this study are known in the IGS database as THTI and FAA1. Their altitude
difference is 86.14 m, and their horizontal distance difference is only 2.56 km. Although they are close
(Figure 1), their surroundings are quite different. FAA1, managed by Météo-France, is located at near
sea-level, under the premises of the international airport, on a very large area that was flattened to
host the airstrip. THTI is located on the main campus of University of French Polynesia, a little bit
more inland, on a ridge crest with a slope of about 8%, at a distance from the sea of about 1.5 km.
They belong to two distinct valleys, each one with its own micro-climate [22].
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Figure 1. Location of the two nearby GPS stations (THTI (149.61° W, 17.58° S, ellipsoidal altitude 98.49 
m) and FAA1 (149.62° W, 17.56° S, ellipsoidal altitude 12.35 m) in the Tahiti Island. (a) Tahiti Nui 
shield volcano (30 km in diameter) and Tahiti Iti volcano (15 km diameter), joined by the isthmus of 
Taravao. Tahiti is located in the South Pacific, at mid-distance from South America to Australia. The 
contour lines of the topography are every 200 m, with the limits of hydrographic units, mostly radial 
valleys, indicated by bold lines. (b) Enlargement of (a), near the two stations, with contour lines of 
the topography every 5 m. The airstrip is clearly visible on the enlargement, close to the FAA1 station. 
The calderas (volcano pits) are indicated in the figures as well as hydrological units (watersheds). 

3. GPS Settings of the THTI and FAA1 IGS Stations 

The THTI station consists of a SEPT POLARX5TR receiver with a LEIAR.R425.R3 antenna, and 
the FAA1 station consists of a SEPT POLARX4 receiver with a LEIAR.R4 antenna. GPS satellite 
precise orbits and clocks as well as consistent Earth-rotation parameters were provided by the Center 
for Orbit Determination in Europe (CODE). Together with the Bernese GNSS Software Version 5.2 
with PPP approach, hydrostatic and wet Vienna Mapping Function 1 (VMF1) were used to estimate 
the THTI and FAA1 ZTD estimates with a resolution of one hour [23–25]. To validate the accuracy of 
our ZTD estimates, we made a comparison with the IGS Final troposphere products 
(ftp://cddis.gsfc.nasa.gov). Details of both data processing strategies (ours and IGS) are summarized 
in Table 1. The Bernese 5.2 instead of Bernese 5.0 is used by IGS products from the day of year 29 in 
2017.  

Table 1. Characteristics of our Global Positioning System (GPS) data processing and 
International Global Navigation Satellite System Service (IGS) data analysis centers. 
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Figure 1. Location of the two nearby GPS stations (THTI (149.61◦ W, 17.58◦ S, ellipsoidal altitude
98.49 m) and FAA1 (149.62◦ W, 17.56◦ S, ellipsoidal altitude 12.35 m) in the Tahiti Island. (a) Tahiti
Nui shield volcano (30 km in diameter) and Tahiti Iti volcano (15 km diameter), joined by the isthmus
of Taravao. Tahiti is located in the South Pacific, at mid-distance from South America to Australia.
The contour lines of the topography are every 200 m, with the limits of hydrographic units, mostly
radial valleys, indicated by bold lines. (b) Enlargement of (a), near the two stations, with contour lines
of the topography every 5 m. The airstrip is clearly visible on the enlargement, close to the FAA1 station.
The calderas (volcano pits) are indicated in the figures as well as hydrological units (watersheds).

3. GPS Settings of the THTI and FAA1 IGS Stations

The THTI station consists of a SEPT POLARX5TR receiver with a LEIAR.R425.R3 antenna, and
the FAA1 station consists of a SEPT POLARX4 receiver with a LEIAR.R4 antenna. GPS satellite precise
orbits and clocks as well as consistent Earth-rotation parameters were provided by the Center for Orbit
Determination in Europe (CODE). Together with the Bernese GNSS Software Version 5.2 with PPP
approach, hydrostatic and wet Vienna Mapping Function 1 (VMF1) were used to estimate the THTI
and FAA1 ZTD estimates with a resolution of one hour [23–25]. To validate the accuracy of our ZTD
estimates, we made a comparison with the IGS Final troposphere products (ftp://cddis.gsfc.nasa.gov).
Details of both data processing strategies (ours and IGS) are summarized in Table 1. The Bernese 5.2
instead of Bernese 5.0 is used by IGS products from the day of year 29 in 2017. The definitions of bias,
root mean square (RMS) and standard deviation (STD)) are shown in Appendix A.

Table 1. Characteristics of our Global Positioning System (GPS) data processing and International
Global Navigation Satellite System Service (IGS) data analysis centers.

Our GPS Data Processing IGS Products

Ephemerides, satellite clocks CODE final IGS final
Approach PPP PPP

Sampling interval 300 s 300 s
Elevation cut-off angle 3 degrees 7 degrees

Mapping function Wet Vienna mapping function 1
(VMF1)

Wet global mapping function
(GMF)

A priori zenith tropospheric delay
(ZTD) model

European Center for
Medium-Range Weather Forecasts

(ECMWF)-based dry VMF1
Global pressure model (GPT)

Ocean loading Applied Applied
Atmospheric loading Applied Applied

Observables Zero differences Double differences
ZTD estimation interval 1 hour 5 minutes

Software version Bernese 5.2 Bernese 5.0/Bernese 5.2

ftp://cddis.gsfc.nasa.gov
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4. The Estimation of GPS PW Values

As one of the most important data in many meteorological departments, numerous efforts have
been made to improve the accuracy of GPS PW values based on different GPS processing strategies.

There are two common positioning strategies used by nearly all the GPS-derived PW retrieval
systems. The first one is the precise point positioning (PPP) technique based on un-differenced approach,
the second one is the relative positioning strategy based on the double-differenced approach [26–29].
Haase et al. (2003) [30] noted that both strategies provide similar PW accuracy when dealing with large
sets of GNSS observations. Compared with relative positioning strategy, which needs to introduce
long baselines (larger than 500 km) to weaken the spatial correlations between network stations,
PPP strategy can operate on an isolated GPS receiver [31]. ZTD values, once all the other errors in
GNSS observations have been modeled or corrected, such as phase center offset (PCO) and phase
center variation (PCV) models [32], can be estimated precisely based on PPP technique with the high
accuracy of GNSS satellite ephemeris and clock products [33]. The ZTD estimate can be divided into
two additive components: The zenith hydrostatic delay (ZHD) and the ZWD. The ZHD estimates
depend on the atmospheric pressure and can be estimated locally from the surface pressure values
recorded at the GPS receiver station with mm accuracy [34]. Thereafter, the ZWD estimate is computed
by subtracting the ZHD estimate from the ZTD estimate. The weighted mean temperature of the
atmospheric column (Tm) plays a very important key in the progress of retrieving PW from the ZWD,
which varies in space and in time. The weighted temperature Tm can be estimated by using a linear
function (y = ax + b) of the surface temperature Ts [35,36]. Bevis et al. (1992) [5] noted that to get the
best results, the constants a and b should be ”tuned” to specific areas and seasons. After the seminal
work of Bevis et al., many additional efforts have been made to retrieve better GNSS PW estimates by
developing better relationships, often based on regional and seasonal fits, between Tm and Ts (Bevis
et al. (1994) [35], Ross and Rosenfeld (1997) [37], Mendes et al. (2000) [38], Wang et al. (2005) [36],
Suresh Raju et al. (2007) [39], Yao et al. (2012) [40], Huang et al. (2018) [41] and Zhang et al. (2018) [20]).

The ZHD accounts for almost 90% of the total ZTD, and the ZWD accounts for about 10% [42].
ZHD can be calculated by adopting the Saastamoinen model, in mm, as given by [34]:

ZHD = 2.2768 Ps/ f (λ, H), (1)

where f (λ, H) = 1− 0.00266· cos(2λ) − 0.00028·H, λ(rad) is the station latitude, H(km) is the height of
the surface above the ellipsoid, and Ps(hPa) is the surface pressure. The ZWD is obtained, by definition,
by subtracting the ZHD from the ZTD obtained from our GPS data processing, as shown:

ZWD = ZTD−ZHD, (2)

The PW estimate is directly related to ZTD by Equation (3) [42]:

PW = Π·ZWD, (3)

where the conversion parameter Π varies as a function of the weighted mean temperature of the
atmosphere Tm (in Kelvin) [36]:

Π =
106

ρ·Rv
( k3

Tm
+ k′2

) , (4)

where k3 and k′2 are atmospheric refractivity constants [35]:

k′2 = 22.1 K/mb, (5)

and
k3 = 3.739·105 K2/mb, (6)
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where ρ = 1000 kg/m3 is the density of liquid water, Rv = 461.495 J/kg·K is the specific gas constant for
water vapor [42,43]. To calculate Tm, vertical profiles of water vapor and temperature are needed [42].
Many scientists have explored different kinds of linear relationship between Tm and Ts from an a priori
knowledge of the water vapor contents of the atmosphere from radio soundings, based on global
and regional [35,39,44–47]. Ross and Rosenfeld [37] noted that the relationship between Tm and Ts

changes with geographic altitude as well as season by using 53 global radiosonde stations. In this work,
we used specific Tm models (see Table 2), that we published in a previous paper (Zhang et al. [20]),
calibrated against three years of GPS ZWD and raw radiosonde (RS) data on Tahiti Island.

Table 2. Tm models for all-season and two different tropical seasons (dry and wet) [20].

Tm Model Intercept Sigma Slope Sigma

All seasons −476.4 145.6 2.68 0.49
Dry season −535.7 252.9 2.89 0.85
Wet season −979.7 226.9 4.36 0.76

5. The Exponential Distribution of PW with Altitude

A rough estimate of PW can be gained from the measurements of surface temperature and dew
point by assuming that the water vapor is exponentially distributed in the atmosphere above a given
location [16]. If we consider a column of liquid water of height h with cross-sectional area A, the mass
of PW in the atmosphere can be written as [18]:

Mh = ρ·A·h, (7)

where ρ is the density of liquid water. Meanwhile, the mass of the water vapor in an atmospheric
column with cross-sectional area A is:

Mwv = A·mw·

∫
∞

Zs

nwv dZ, (8)

where Z is the altitude, mw is the mass of a molecule of water (18 amu). nwv is the density number of
water vapor molecules, and we consider that the water vapor is distributed exponentially (similar to
the bulk of the lower atmosphere) with an exponential decaying distribution as a function of Z like [18]:

nwv = ns·e−(Z−Zs)/H, (9)

where H is a scale height of water vapor. ns is the number of water vapor molecules at the surface
(Zs), which is related to the water vapor partial pressure (Pw) and the surface temperature Ts in Kelvin
by [17]:

ns =
Pw

K·Ts
, (10)

and

Pw = e1.81e
a

Td(
◦

C)

Td(
◦

C)+237.7 = 6.11
RH
100

e
17.271 Ts(

◦
C)

237.7+Ts(
◦

C) , (11)

and

Td
(
◦

C
)
=

bγ
a− γ

, (12)

and

γ = a
Ts

(
◦

C
)

b + Ts(
◦C)

+ ln(RH/100), (13)

where K is the Boltzmann constant and RH is the relative humidity, Td is the dew point temperature in
degrees Celsius

(
◦

C
)
, a = 17.271 and b = 237.7. Ts

(
◦

C
)

is the surface temperature in
◦

C [17].
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Observationally, the scale height of water vapor (H) in the Earth’s atmosphere is between 1.5 and
2 km [18]. Butler (1998) [16] assumed the scale height of water vapor to be 1.5 km. Vicente and
Pulido (2012) [17] investigated the annual average scale (1340 ± 120 m) from data obtained by two
balloons, which provided data for pressure, height, temperature, dew point, relative humidity, and
other parameters along their upwards trajectories through the atmosphere from 630 m to 30 km.

In order to find the integrated exponential PW (PWE) from Zs to Z0, we have to equate the mass
of the water vapor to that of the liquid (Equations (7) and (8)). Taking into account that the difference
in altitude is very small, meaning that we can equate e−(Z0−Zs)/H to 1− (Z0 −Zs)/H, we get:

PWE =
mw·ns

ρ
·(Z0 −Zs), (14)

This quantity is independent of H up to the second order. Therefore,

PWE(FAA1− THTI) =
mw·ns

ρ
·(ZsTHTI −ZsFAA1), (15)

Equation (15) shows the difference of PW values at THTI and FAA1 as a function of their difference
in altitude. ns can be relative to either THTI or FAA1, the corresponding PWE values will be very close.

6. Results and Discussion

6.1. ZTD Estimates for THTI and FAA1

In this section, we give the comparisons of THTI ZTD and FAA1 ZTD estimates based on our GPS
data processing over three years (May 2016 to April 2019), with respect to the IGS Final tropospheric
products. The temporal resolution is one hour. As displayed in Figure 2a,c, it can be noticed that
the GPS-derived ZTD from our GPS data processing agrees very well with the corresponding ZTD
from IGS Final products, for both stations (except from 9 July to 13 August 2018 with no GPS data
measurements). Figure 2b,d and Table 3 show the distributions of their differences, after removing off

the outliers (±3 sigma). They are close to Gaussian distributions. The ZTD differences are probably
mainly due to the details of the algorithms and strategy used, with no significant systematic biases.
The root mean square (RMS) values of ZTD differences are 5.37 mm at the THTI site and 8.21 mm at
the FAA1 site. FAA1 is located near sea-level, and this may be the cause of its slightly lower accuracy
with respect to the IGS Final products.
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and monthly averaged estimates of our THTI ZTD (green dots) and IGS THTI ZTD (magenta dots)
(a) and our FAA1 ZTD (light-green dots) with IGS FAA1 ZTD (red dots)), and monthly averaged
estimates of our FAA1 ZTD (green dots) and IGS FAA1 ZTD (magenta dots) (c), and the histograms
of IQ (intelligence quotient) for the corresponding ZTD differences between GPS THTI ZTD and IGS
THTI ZTD (b) and between GPS FAA1 ZTD and IGS FAA1 ZTD (d).

Table 3. Statistical summary for the comparison between GPS THTI/FAA1 ZTD and IGS THTI/FAA1
ZTD (IGS minus GPS) in terms of maximum (max), minimum (min), bias, root mean square (RMS) and
standard deviation (STD), relative to Figure 2b,d.

Difference Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

THTI 17.09 −17.06 −0.45 5.37 5.35 24279
FAA1 26.76 −26.75 0.87 8.21 8.16 23741

Figure 3 shows the inter-comparisons of our ZTD estimates (Figure 3a) and IGS ZTD estimates
(Figure 3c) between THTI and FAA1 at the same epoch, and Table 4 summarizes the results. It can be
noticed that there is a larger bias (around 30 mm) between our THTI ZTD and FAA1 ZTD estimates,
also seen between the IGS THTI ZTD and IGS FAA1 ZTD estimates. The difference in altitude between
the two GPS stations may play a role here, with different meteorological parameters entering the
mapping functions used in the respective processing. It must be emphasized that the VMF1 mapping
functions (Table 1) used in the Bernese 5.2 are inputting ECMWF meteorological data (see following
Section 6.2).
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pressure and the ECMWF pressure. Figure 5 shows the different ZHD values at the THTI station 
during the whole year of 2018. The ZHDs derived from local pressure and those from the ECMWF 
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Figure 3. Comparisons between our THTI ZTD estimates (light-green dots) and our FAA1 ZTD
estimates (red dots), and monthly averaged estimates of the THTI ZTD (green dots) and FAA1 ZTD
(magenta dots) (a), and IGS THTI ZTD estimates (light-green dots) versus IGS FAA1 ZTD estimates
(red dots), and monthly averaged estimates of the IGS THTI ZTD (green dots) and IGS FAA1 ZTD
(magenta dots) (c), and the corresponding ZTD differences between THTI ZTDs and FAA1 ZTDs (b)
and between IGS THTI ZTDs and IGS FAA1 ZTDs (d).

Table 4. Statistical summary for the comparison between GPS/IGS THT ZTD and GPS/IGS FAA1 ZTD
(FAA1 minus THTI) in terms of max, min, bias, RMS, and STD, relative to Figure 3b,d.

Difference Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

Our FAA1-THTI 64.53 −11.84 30.45 31.25 7.03 22679
IGS FAA1-THTI 71.90 1.20 31.71 32.17 5.42 22679

6.2. Meteorological Data

The site-specific pressure Ps and temperature Ts are very important parameters to derive the
precise GPS PW estimates (see Equations (2) to (4)). In this study, these meteorological parameters
were sourced from the gridded (2.0◦ × 2.5◦ latitude-longitude) VMF1 (vmf1_g) data of the ECMWF
(http://ggosatm.hg.tuwien.ac.at) with a 6 hour temporal resolution, including hydrostatic/wet coefficient,
hydrostatic/wet zenith delay, mean temperature, pressure/temperature at the site, water vapor pressure,
and orthometric height of the station (using geoid EGM96).

In order to assess the reliability of the ECMWF pressure and temperature data, we compared firstly
their values with the local values recorded at the THTI station for the whole year of 2018. The THTI
recorded data are from the co-located rain gauge station (a few meters distance from the GPS antenna),
with a 1 min sampling, and include temperature, relative humidity, pressure, rainfall accumulation,
and rainfall intensity [48]. Figure 4 shows the variations of the pressure and temperature from ECMWF
(with a 1 hour linear sub-interpolation) and the local rain gauge station at THTI. It can be seen that the
two meteorological datasets are consistent. Table 5 summarizes the comparison results—the bias of
pressure and temperature is 0.58 hPa and 0.26 K, respectively, and the associated RMS is 0.87 hPa and
2.21 K.

Then, the ZHD is calculated according to Saastamoinen model (Equation (1)) based on the local
pressure and the ECMWF pressure. Figure 5 shows the different ZHD values at the THTI station
during the whole year of 2018. The ZHDs derived from local pressure and those from the ECMWF are
very close. Table 5 summarizes the statistical results between the ZHDs from the observed pressure
values and those from the ECMWF. The ZHDs as derived from the ECMWF data are in error by about
1.32 mm, and the RMS is about 1.99 mm compared to the local pressure values. Therefore, the ECMWF
meteorological data meet the requirement of the level of accuracy [23] and can be used for our following
data processing.

http://ggosatm.hg.tuwien.ac.at
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Figure 5a,c shows the time series of pressure and temperature for the THTI and FAA1 sites, as 
extracted from the ECMWF database. The temporal resolution is six hours. Their differences are 
shown in Figure 5b,d and summarized in Table 6. The standard pressure difference between THTI 
and FAA1 coming from the difference in altitude should be −10.30 hPa (green dots in Figure 5b), 
instead of the −9.81 hPa (Table 6) value from the ECMWF database, according to the standard 

Figure 4. Comparisons of ECMWF pressure (light-green dots) with local pressure (red dots), and 10
days averaged estimates of the ECMWF pressure (green dots) and local pressure (magenta dots) (a),
and ECMWF temperature (light-green dots) with local temperature (red dots), and 10 days averaged
estimates of the ECMWF temperature (green dots) and local temperature (magenta dots) (b), and the
time series of ZHD derived from ECMWF pressure (light green dots) and local pressure (red dots), and
every 10 days averaged estimates of the ECMWF ZHD (green dots) and local ZHD (magenta dots) (c),
and the histogram of ZHD difference (d) during the whole year of 2018. The temporal resolution is
one hour.

Table 5. Statistical summary for the comparison between ECMWF pressure/temperature and local
pressure/temperature, and ZHD derived from two kinds of pressure data (ECMWF minus local) in
terms of max, min, bias, RMS, and STD during the whole year of 2018.

Difference Max Min Bias RMS STD Data Points

Pressure (hPa) 2.68 −2.23 0.58 0.87 0.65 8726
Temperature (K) 6.33 −5.43 0.26 2.21 2.19 8726

DZHD (mm) 5.08 −6.12 −1.32 1.99 1.49 8726

Figure 5a,c shows the time series of pressure and temperature for the THTI and FAA1 sites,
as extracted from the ECMWF database. The temporal resolution is six hours. Their differences are
shown in Figure 5b,d and summarized in Table 6. The standard pressure difference between THTI
and FAA1 coming from the difference in altitude should be −10.30 hPa (green dots in Figure 5b),
instead of the −9.81 hPa (Table 6) value from the ECMWF database, according to the standard formula
P = 1013.25·(1− 0.0000226·H)5.225 [23,49]. This is coherent with the bias in pressure between local THTI
and ECMWF THTI data (0.58 hPa) (Table 5). The difference in temperature between THTI and FAA1
should be −0.56 K (green dots in Figure 5d) according to the standard lapse rate of 0.0065 K/m ([50,51]
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with a sea level temperature of 288 K). This is also coherent with the bias in temperature between local
THTI and ECMWF THTI data (0.26 K) (Table 5).
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6.3. ZWD Estimates for THTI and FAA1 
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to estimate the ZHDs based on the Saastamoinen model (Equation (1)) for three years (May 2016 to 
April 2019). The ZWD estimates were obtained by subtracting the corresponding ZHDs from the 

Figure 5. Comparisons of THTI (light-green dots) and FAA1 (red dots) ECMWF pressures, and monthly
averaged estimates of the THTI (green dots) and FAA1 (magenta dots) ECMWF pressures (a) and
temperatures (c), and the pressure difference from standard model (−10.30 hPa, green dots) and the
corresponding pressure difference from ECMWF (b) the temperature difference from standard model
(−0.56 K, green dots) and the corresponding temperature difference from ECMWF (d). The temporal
resolution is six hours.

Table 6. Statistical summary for the comparison between THTI and FAA1 ECMWF pressure/temperature
(THTI minus FAA1) in terms of max, min, bias, RMS, and STD, relative to Figure 5b,d.

Difference Max Min Bias RMS STD Data Points

Pressure (hPa) −9.64 −10.05 −9.81 9.81 0.06 4264
Temperature (K) −0.15 −0.85 −0.60 0.60 0.09 4264

6.3. ZWD Estimates for THTI and FAA1

The ECMWF pressure with a 1 hour linear sub-interpolation is used as our meteorological data
to estimate the ZHDs based on the Saastamoinen model (Equation (1)) for three years (May 2016 to
April 2019). The ZWD estimates were obtained by subtracting the corresponding ZHDs from the ZTDs
obtained from our GPS data processing (see Equation (2)). The variations of THTI and FAA1 ZWDs
are shown in Figure 6a. The bias of their differences is −8.12 mm, and the RMS is 10.76 mm (Table 7).
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Figure 6. Comparisons of THTI ZWD (light-green dots) with FAA1 ZWD (red dots), and monthly
averaged estimates of the THTI ZWD (green dots) and FAA1 ZWD (magenta dots) (a) and the ZWD
difference between them (b). The temporal resolution is one hour.

Table 7. Statistical summary for the comparison between our THTI ZWDs and our FAA1 ZWDs (THTI
minus FAA1) in terms of max, min, bias, RMS, and STD, relative to Figure 6b.

Difference Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

ZWD 34.10 −42.22 −8.12 10.76 7.06 22649

6.4. PW Estimates for THTI and FAA1

In this section, the GPS PW estimates were derived based on the ECMWF meteorological data
and the local Tm models (Table 2) for three years (May 2016 to April 2019). Figure 7a,c shows the time
series of PW based on an all-season Tm model and seasonal (wet and dry) Tm model for THTI and
FAA1 stations are similar. Figure 7b,d shows the variations of PW differences based on different Tm

models for THTI and FAA1 stations in the dry and wet seasons. Table 8 summarizes the statistical
results. There is a larger bias and a smaller STD induced by the choice of Tm model in the dry season
than in the wet season at the two stations.

Table 8. Statistical summary for the comparisons between THTI/FAA1 PW based on all seasons’ Tm

model and THTI/FAA1 PW based on seasonal Tm model (all seasons’ minus seasonal) in terms of max,
min, bias, RMS, and STD, relative to Figure 7b,d.

Difference Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

THTI Dry −0.13 −0.72 −0.41 0.42 0.11 10,875
THTI Wet 1.13 −0.60 0.13 0.27 0.24 11,774
FAA1 Dry −0.15 −0.76 −0.43 0.45 0.11 10,875
FAA1 Wet 1.09 −0.86 −0.03 0.25 0.25 11,774

Figure 8 shows the PW differences based on different Tm models between two nearby GPS stations
(THTI and FAA1). It can be seen that some large PW values (>70 mm) are showing up in the wet
season due to the very humid climate of Tahiti. The FAA1 PW estimates are systematically higher than
THTI PW estimates. Based on an all seasons’ Tm model, the bias of their PW differences is −1.73 mm,
and based on seasonal Tm model, the bias of their PW differences is −1.82 mm (Table 9). The same GPS
strategy was used during our GPS data processing for THTI and FAA1. It is natural to think that the
difference in altitude may play a role here.
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Figure 8 shows the PW differences based on different 𝑇௠  models between two nearby GPS 
stations (THTI and FAA1). It can be seen that some large PW values (>70 mm) are showing up in the 
wet season due to the very humid climate of Tahiti. The FAA1 PW estimates are systematically higher 
than THTI PW estimates. Based on an all seasons’ 𝑇௠ model, the bias of their PW differences is −1.73 
mm, and based on seasonal 𝑇௠ model, the bias of their PW differences is −1.82 mm (Table 9). The 

Figure 7. Comparisons of THTI PW values (magenta dots) based on all seasons’ Tm model with THTI
Dry PW (cyan dots) and THTI Wet PW (light-green dots) based on the corresponding dry and wet
season’s Tm models, and monthly averaged estimates of the THTI PW (red dots) and THTI Dry PW
(blue dots) and THTI Wet PW (green dots) (a) and their differences (b), and comparisons of FAA1 PW
(magenta dots) based on all seasons’ Tm model with FAA1 Dry PW (cyan dots) and FAA1 Wet PW
(light-green dots) based on the corresponding dry and wet season’s Tm models, and monthly averaged
estimates of the FAA1 PW (red dots) and FAA1 Dry PW (blue dots) and FAA1 Wet PW (green dots) (c)
and their differences (d).
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Figure 8. Comparisons of THTI PW (light-green dots) with FAA1 PW estimates (magenta dots) based
on an all seasons’ Tm model, and monthly averaged estimates of the THTI PW (green dots) and FAA1
PW (red dots) (a) and their differences (b), and based on seasonal Tm models (c) and their differences (d).

Table 9. Statistical summary for the comparison between THTI and FAA1 PW estimates based on an
all seasons’ Tm model and based on seasonal Tm models (THTI minus FAA1) in terms of max, min, bias,
RMS, and STD, relative to Figure 8b,d.

Difference Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

All Seasons 6.11 −7.97 −1.73 2.17 1.31 22649
Seasonal 6.16 −8.05 −1.82 2.26 1.34 22649

6.5. Statistical Analysis

The question of focus is now: Are the time series of differences in ZWD and PW estimates between
the two stations “signal” or “noise”? To assess this question, we first made cross-comparisons between
ZWD and PW time-series estimates versus a normal distribution by using quantile–quantile (QQ) plots
(Figure 9a,d) for the THTI and FAA1 stations. All the distributions of ZWD and PW estimates shown
in the figures are clearly non-Gaussian, with heavy tails, meaning that extreme values are more likely
to be found than in a normal distribution. This has been noted for PW estimates by Iassamen et al.
(2009) [52] who proposed a Weibull distribution. This heavy tails distribution can also be seen in the
distributions of the differences between the PW and ZWD values (Figure 9e,f), albeit one expects that
these differences will be naturally closer to a “white noise”, i.e., a Gaussian distribution. Figure 9g–j
shows that the time series of ZWD and PW differences are also statistically unrelated to the ZWD and
PW native series.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 28 

 

 

distribution can also be seen in the distributions of the differences between the PW and ZWD values 
(Figure 9e,f), albeit one expects that these differences will be naturally closer to a “white noise”, i.e., 
a Gaussian distribution. Figure 9g–j shows that the time series of ZWD and PW differences are also 
statistically unrelated to the ZWD and PW native series. 

 
(a) (b) 

 
(c) (d) 

(e) (f) 

Figure 9. Cont.



Sensors 2019, 19, 5578 14 of 26

Sensors 2019, 19, x FOR PEER REVIEW 14 of 28 

 

 

distribution can also be seen in the distributions of the differences between the PW and ZWD values 
(Figure 9e,f), albeit one expects that these differences will be naturally closer to a “white noise”, i.e., 
a Gaussian distribution. Figure 9g–j shows that the time series of ZWD and PW differences are also 
statistically unrelated to the ZWD and PW native series. 

 
(a) (b) 

 
(c) (d) 

(e) (f) 

Sensors 2019, 19, x FOR PEER REVIEW 15 of 28 

 

 

 
(g) (h) 

 
(i) 

 
(j) 

  

Figure 9. QQ plots of THTI ZWD (a) and THTI PW (b) with normal law, FAA1 ZWD (c) and FAA1 
PW (d) with normal law, and QQ plots of cross-comparisons between THTI and FAA1, their ZWD 
difference with normal law (e) and their PW difference with normal law (f), and their ZWD difference 
with THTI ZWD (g) and their PW difference with THTI PW (h), and their ZWD differences with 
FAA1 ZWD (i), and their PW differences with FAA1 PW (j). The red lines are linear quartile–quartile 
estimates of the fit to be expected if the two distributions are linearly related. 

Secondly, we did a Fourier analysis (spectra) of the ZWD (Figure 10a,b) and PW (Figure 10c,d) 
time series of THTI and FAA1 and their differences and a comparison with the expected white noise 
spectrum. The large peak on the right of each figure corresponds to the annual cycle. A daily cycle 
can also be seen. It is important to note that the power spectrum of the time series of the differences 
lies over the white noise spectrum curves from 0 to 180 cycles/year, with spikes for 1 cycle/year 
(annual signature), 365 cycles/year (diurnal signature) and harmonics. This clearly means that there 
is a deterministic signal in the differences between THTI and FAA1 for the ZWD and PW estimates. 

Figure 9. QQ plots of THTI ZWD (a) and THTI PW (b) with normal law, FAA1 ZWD (c) and FAA1 PW
(d) with normal law, and QQ plots of cross-comparisons between THTI and FAA1, their ZWD difference
with normal law (e) and their PW difference with normal law (f), and their ZWD difference with THTI
ZWD (g) and their PW difference with THTI PW (h), and their ZWD differences with FAA1 ZWD (i),
and their PW differences with FAA1 PW (j). The red lines are linear quartile–quartile estimates of the
fit to be expected if the two distributions are linearly related.
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Secondly, we did a Fourier analysis (spectra) of the ZWD (Figure 10a,b) and PW (Figure 10c,d)
time series of THTI and FAA1 and their differences and a comparison with the expected white noise
spectrum. The large peak on the right of each figure corresponds to the annual cycle. A daily cycle
can also be seen. It is important to note that the power spectrum of the time series of the differences
lies over the white noise spectrum curves from 0 to 180 cycles/year, with spikes for 1 cycle/year
(annual signature), 365 cycles/year (diurnal signature) and harmonics. This clearly means that there is
a deterministic signal in the differences between THTI and FAA1 for the ZWD and PW estimates.
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spectra of PW differences (enlarged green curve of (c)). The black line is the spectrum of white noise. 
Sub-diurnal variations cannot be retrieved, as they are buried in the noise. 
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In this section, we analyze the differences of PW values between THTI and FAA1 based on 
exponentially derived PW estimates (PWE, Equation (15)) to see if the differences in the PW time 
series can be attributed to the difference in altitude.  

For the calculation of PWE (THTI) and PWE (FAA1), the dew point temperature or the relative 
humidity and the surface temperature are needed (Equation (11)). The FAA1 site has dew point 
temperature records, which can be retrieved from the National Oceanic and Atmospheric 
Administration (NOAA) Integrated Surface Database (ISD) (https://www.ncdc.noaa.gov/isd). ISD 
includes numerous parameters such as wind speed and direction, wind gust, temperature, dew point, 
cloud data, sea level pressure, altimeter setting, station pressure, and various other elements as 
observed by each station [53]. However, THTI site does not have collocated NOAA data records, and 
the relative humidity is retrieved from a collocated rain gauge station operating since 2018 (see 
Section 6.2) [48].  

Therefore, in order to maintain consistency between the PWE estimates of FAA1 and THTI, we 
chose to use for both sites ECMWF meteorological data, as we did for the GPS processing of PW 
values. We validated this choice by a cross-comparison between all the available temperature records 
at the two sites. To complete this cross-comparison, we first analyzed, for the whole year of 2018, the 

Figure 10. The power spectra of THTI ZWD (blue curve), FAA1 ZWD (red curve) and their differences
(green curve) (a), and (b) the power spectrum of ZWD differences (enlarged green curve of (a)), the black
line is the spectrum of a white noise matching the data noise; and the power spectra of THTI PW (blue
curve), FAA1 PW (red curve) and their differences (green curve) (c), and (d) the power spectra of PW
differences (enlarged green curve of (c)). The black line is the spectrum of white noise. Sub-diurnal
variations cannot be retrieved, as they are buried in the noise.

6.6. Comparisons between GPS PW and PWE for THTI and FAA1

In this section, we analyze the differences of PW values between THTI and FAA1 based on
exponentially derived PW estimates (PWE, Equation (15)) to see if the differences in the PW time series
can be attributed to the difference in altitude.

For the calculation of PWE (THTI) and PWE (FAA1), the dew point temperature or the
relative humidity and the surface temperature are needed (Equation (11)). The FAA1 site has
dew point temperature records, which can be retrieved from the National Oceanic and Atmospheric
Administration (NOAA) Integrated Surface Database (ISD) (https://www.ncdc.noaa.gov/isd). ISD
includes numerous parameters such as wind speed and direction, wind gust, temperature, dew
point, cloud data, sea level pressure, altimeter setting, station pressure, and various other elements

https://www.ncdc.noaa.gov/isd
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as observed by each station [53]. However, THTI site does not have collocated NOAA data records,
and the relative humidity is retrieved from a collocated rain gauge station operating since 2018 (see
Section 6.2) [48].

Therefore, in order to maintain consistency between the PWE estimates of FAA1 and THTI,
we chose to use for both sites ECMWF meteorological data, as we did for the GPS processing of PW
values. We validated this choice by a cross-comparison between all the available temperature records
at the two sites. To complete this cross-comparison, we first analyzed, for the whole year of 2018, the
ECMWF temperature values with respect to the NOAA values for the FAA1 station. The bias between
NOAA recorded temperatures and the corresponding ECMWF values is 0.87 ◦C with an RMS of 2.34 ◦C
(Figure 11a and Table 10). For the THTI station, the bias between the rain gauge recorded temperatures
and the corresponding ECMWF values is 0.26 K with an RMS of 2.21 K (Figure 4 and Table 5). The bias
between the FAA1 NOAA recorded temperature and the THTI rain gauge temperature is 1.23 ◦C with
an RMS of 1.44 ◦C (Figure 11b and Table 10). These differences are of the same order as the differences
between the ECMWF temperature records at the two sites (bias of −0.60 K with an RMS of 0.60 K
(Figure 5 and Table 6). This demonstrates that all temperature records are coherent down to 1 ◦C
accuracy, validating the use of ECMWF values for both sites for the computation of PWE estimates.
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Figure 12a shows the variations of the difference of GPS-PWs and PWEs. The scatter for the GPS-
PWs differences between the two stations is a lot more pronounced that the corresponding scatter for 
the PWE values, revealing a large daily variability. Table 11 summarizes the statistical results. It can 
be seen that the bias of the difference of GPS-PWs is 1.75 mm and close to the bias (about 1.50 mm) 
of the differences of PWEs. Figure 12b and Table 12 show that the linear relation (𝑦 = 𝑎𝑥 + 𝑏) between 
GPS-PW differences and PWE differences. If these differences were only driven by the difference in 
altitude with respect to an exponential decay of the water vapor, this relationship should be a line 
with a slope value of one (𝑦 = 𝑥) (the black line in Figure 12b). Nevertheless, the cloud of data points 
in Figure 12b has almost a round shape, indicating that the differences in PW values cannot be 
attributed to the difference in altitude if we assume this exponential decay. The difference in altitude 
certainly plays a role, but a minor one. 

Figure 11. Comparisons of surface temperature from NOAA (red dots) and ECMWF (light-green dots),
and 10 days averaged temperature estimates from NOAA (magenta dots) and ECMWF (green dots)
(a), and the comparison of local THTI (light-green dots) temperature and NOAA FAA1 (red dots)
temperature, and 10 days averaged temperature estimates of local THTI (green dots) and NOAA FAA1
(magenta dots) (b). The comparison is done for the whole year of 2018.

Table 10. Statistical summary for the comparison between NOAA and ECMWF at FAA1 station (NOAA
minus ECMWF) and the comparison of local THTI temperature with NOAA FAA1 temperature (NOAA
FAA1 minus local THTI) in terms of max, min, bias, RMS, and STD, for the whole year of 2018.

Difference Max Min Bias RMS STD Data Points

FAA1 (◦C) 6.87 −5.42 0.87 2.34 2.17 8271
FAA1–THTI (◦C) 6.60 −2.00 1.23 1.44 0.76 8271

Figure 12a shows the variations of the difference of GPS-PWs and PWEs. The scatter for the
GPS-PWs differences between the two stations is a lot more pronounced that the corresponding scatter
for the PWE values, revealing a large daily variability. Table 11 summarizes the statistical results. It can
be seen that the bias of the difference of GPS-PWs is 1.75 mm and close to the bias (about 1.50 mm) of
the differences of PWEs. Figure 12b and Table 12 show that the linear relation (y = ax + b) between
GPS-PW differences and PWE differences. If these differences were only driven by the difference in
altitude with respect to an exponential decay of the water vapor, this relationship should be a line with
a slope value of one (y = x) (the black line in Figure 12b). Nevertheless, the cloud of data points in
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Figure 12b has almost a round shape, indicating that the differences in PW values cannot be attributed
to the difference in altitude if we assume this exponential decay. The difference in altitude certainly
plays a role, but a minor one.
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differences in these time series can be attributed to an effect induced by the wind. We used two wind 
datasets, the first one relative to a 10 m altitude, from a meteorological mast collocated with the FAA1 
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from the RS balloon station of the airport, also collocated with FAA1. 

Figure 13a,c shows the variations of the 10 days averaged values of the wind velocity from 
NOAA and RS with the 10 days averaged values of ZWD values (Figure 13a) and PW values (Figure 
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Figure 12. Comparisons of PW differences from GPS (FAA1-THTI, light-green dots) and their monthly
averaged values (green dots) and exponentially derived PW (PWE) estimates (Equation (15)), with
ns values for THTI (blue dots) and FAA1 (red dots) (a), and the respective fits of GPS-PW differences
based on Equation (15) (b). The black line corresponds to the one-to-one relationship between the
GPS-PW differences and the PWE differences.

Table 11. Statistical summary for the differences of GPS-PW, PWE (FAA1) and PWE (THTI) in terms of
max, min, bias, RMS, and STD, relative to Figure 12a.

Difference Max (mm) Min (mm) Bias (mm) RMS (mm) STD (mm) Data Points

GPS-PW 8.0 −4.59 1.75 2.24 1.39 6799
PWE (FAA1) 2.07 0.90 1.51 1.53 0.19 6799
PWE (THTI) 2.03 0.67 1.47 1.49 0.21 6799

Table 12. The fits of the difference of GPS-PWs and PWEs, relative to Figure 12b.

Intercept Slope Correlation Coefficient

FAA1 PWEs −0.26 ± 0.13 1.33 ± 0.09 0.18
THTI PWEs 0.39 ± 0.11 0.92 ± 0.08 0.14

6.7. Correlation between ZWD, PW, and Wind Measurements

In this section, we analyze the differences of ZWD and PW values between THTI and FAA1
during the period of 2017–2018 (we had at our disposal two full seasonal cycles) to see if the differences
in these time series can be attributed to an effect induced by the wind. We used two wind datasets,
the first one relative to a 10 m altitude, from a meteorological mast collocated with the FAA1 GNSS
receiver (ftp://ftp.ncdc.noaa.gov/pub/data/noaa) and the other one relative to a 1000 m altitude, from
the RS balloon station of the airport, also collocated with FAA1.

Figure 13a,c shows the variations of the 10 days averaged values of the wind velocity from NOAA
and RS with the 10 days averaged values of ZWD values (Figure 13a) and PW values (Figure 13c).
The variations of the corresponding averaged ZWD and PW differences with the wind velocity are
shown in Figure 13b,d. As displayed, the averaged wind velocity values from RS (1000 m) are larger
than those from NOAA (10 m), as there is less friction with the surface.

ftp://ftp.ncdc.noaa.gov/pub/data/noaa
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wind velocity from NOAA (green dots) and RS (cyan dots) (b), and for PW differences (d).  
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Land–sea contrast initiates sea breeze during the day and land breeze at night. The wind mast 
at 10 m is located on the north-western coast of Tahiti, hence on the leeward side. Therefore, the 
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Figure 13. Variations of the averaged ZWD values of THTI (red dots) and FAA1 (blue dots) and the
wind velocity values from NOAA (green dots) and RS (cyan dots) (a), and for PW values (c), and the
variations of the corresponding averaged ZWD differences (red dots) between two stations with the
wind velocity from NOAA (green dots) and RS (cyan dots) (b), and for PW differences (d).

Table 13 summarizes the statistical results of the correlation with the wind. The correlations of the
PW differences with the wind at 1000 m are at a 40% level, showing that the wind certainly plays a role
in PW variations. The value of the same correlation with the surface wind is at a 15% level, almost
not significant from a statistical point of view. However, we looked in further detail at the surface
wind flow, that is to say wind speed and direction. PW is a vertical integral value; therefore, moist air
parcels converging on the island would cause PW increases, and moist air parcels diverging would
cause PW decreases.

Table 13. The fits of PW and ZWD differences between THTI and FAA1 with wind velocity from
NOAA and RS.

NOAA RS Correlation Coefficient

Intercept Slope Intercept Slope NOAA RS
PW Difference 1.17 ± 0.06 0.18 ± 0.02 0.43 ± 0.07 0.21 ± 0.01 7.55% 16.24%

Mean PW Difference 1.24 ± 0.03 0.16 ± 0.01 0.47 ± 0.03 0.21 ± 0.00 16.25% 39.20%
ZWD Difference 5.58 ± 0.34 0.85 ± 0.11 1.67 ± 0.36 1.05 ± 0.06 6.43% 15.03%

Mean ZWD Difference 5.93 ± 0.13 0.73 ± 0.04 1.85 ± 0.13 1.02 ± 0.02 14.43% 37.94%

Land–sea contrast initiates sea breeze during the day and land breeze at night. The wind mast at
10 m is located on the north-western coast of Tahiti, hence on the leeward side. Therefore, the breeze
circulation tends to develop easily and frequently in this shielded area.
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Sea breeze circulation develops during the day due to the temperature and pressure difference
between the island and the surrounding ocean. Moist air parcels tend to converge towards the island,
and clouds form and agglomerate on the mountains in the middle of the day. At night the process
reverses; the air parcels hurtle down the valleys towards the ocean. In this case, moist air parcels go
away from the island, hence there is divergence of the flow.

Wind direction can therefore give insight to determine whether there is convergence and ascent
(i.e., PW increase) or not. A closer look at the wind mast location on the island and the wind roses
plotted on Figure 14 clearly shows that wind is coming from north-east (NE), north-west (NW) and
south-west (SW) more often during the day (08:00 to 17:00) and air parcels are converging towards
the island (Figure 14a). However, east and south-east (SE) winds draw the air parcels away from the
island during night time (20:00 to 05:00) (Figure 14b).
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Figure 14. Ten m wind rose for 2017 and 2018 at FAA1 station: (a) during the day time from 8:00 to 
17:00, and (b) during the night time from 20:00 to 05:00.  

In Figure 15, we plotted histograms of wind direction by considering three wind speed intervals: 
0 to 2 m/s, 2 to 4 m/s, and 4 to 10 m/s (hourly wind direction and speed from NOAA at FAA1 station). 
These histograms show interesting wind flow characteristics. Considering low wind speed, one can 
notice that the corresponding wind direction comes from north-east and south-east quadrants (Figure 
15a). The east and south-east directions, corresponding to the land breeze circulation and hence 
divergence (because the air parcels go away from the island) tend to “disappear” for moderate wind 
speeds (Figure 15b). Wind with high speed, coming from north-east, north-west, and south-west 
directions converge on the island, therefore causing ascent and humidity rise (Figure 15c). These 
focusing and defocusing mechanisms are the causes of the weak correlations seen in Table 13. 

Figure 14. Ten m wind rose for 2017 and 2018 at FAA1 station: (a) during the day time from 8:00 to
17:00, and (b) during the night time from 20:00 to 05:00.

In Figure 15, we plotted histograms of wind direction by considering three wind speed intervals:
0 to 2 m/s, 2 to 4 m/s, and 4 to 10 m/s (hourly wind direction and speed from NOAA at FAA1 station).
These histograms show interesting wind flow characteristics. Considering low wind speed, one
can notice that the corresponding wind direction comes from north-east and south-east quadrants
(Figure 15a). The east and south-east directions, corresponding to the land breeze circulation and
hence divergence (because the air parcels go away from the island) tend to “disappear” for moderate
wind speeds (Figure 15b). Wind with high speed, coming from north-east, north-west, and south-west
directions converge on the island, therefore causing ascent and humidity rise (Figure 15c). These
focusing and defocusing mechanisms are the causes of the weak correlations seen in Table 13.
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Figure 15. Histogram of 10 m wind direction at FAA1 for 2017−2018 (a) for 0 to 2 m/s, and (b) for 2 
to 4 m/s, and (c) for 4 to 10 m/s. North-east direction is indicated by “NE” and spans 0° to 90°, south-
east direction is indicated by “SE” and spans 90° to 180°, south-west direction is indicated by “SW” 
and spans 180° to 270°, north-west direction is indicated by “NW” and spans 270° to 360°. The 
corresponding wind rose is shown in Figure 14. 

6.8. Influence of the Topography on ZWD and PW Estimates 

As displayed in Figure 1, although the THTI and FAA1 stations are only 2.56 km apart, they are 
located in completely different settings. The FAA1 is located in the large, artificially flattened area of 
the airport a few meters from the sea, while the THTI is located above a ridge with a slope of about 
8% (Figure 1). This difference in the topography settings is mainly due to the conical shape of the 
volcano, meaning that their mean insolation is different. The contents of water vapor in the 
atmosphere are driven in part (around 10% to 15% [54]) by land–surface evapotranspiration. This 
effect is certainly larger in the tropical rain forest of Tahiti [55]. Land evapotranspiration (soil 
evaporation plus plant transpiration) is driven, for a large part, by insolation ([56,57] and Figure 16), 
the vegetation cover [58], and the surface wind and surface temperature [59,60]. Research about 
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Figure 15. Histogram of 10 m wind direction at FAA1 for 2017–2018 (a) for 0 to 2 m/s, and (b) for
2 to 4 m/s, and (c) for 4 to 10 m/s. North-east direction is indicated by “NE” and spans 0◦ to 90◦,
south-east direction is indicated by “SE” and spans 90◦ to 180◦, south-west direction is indicated
by “SW” and spans 180◦ to 270◦, north-west direction is indicated by “NW” and spans 270◦ to 360◦.
The corresponding wind rose is shown in Figure 14.

6.8. Influence of the Topography on ZWD and PW Estimates

As displayed in Figure 1, although the THTI and FAA1 stations are only 2.56 km apart, they are
located in completely different settings. The FAA1 is located in the large, artificially flattened area of
the airport a few meters from the sea, while the THTI is located above a ridge with a slope of about 8%
(Figure 1). This difference in the topography settings is mainly due to the conical shape of the volcano,
meaning that their mean insolation is different. The contents of water vapor in the atmosphere are
driven in part (around 10% to 15% [54]) by land–surface evapotranspiration. This effect is certainly
larger in the tropical rain forest of Tahiti [55]. Land evapotranspiration (soil evaporation plus plant
transpiration) is driven, for a large part, by insolation ([56,57] and Figure 16), the vegetation cover [58],
and the surface wind and surface temperature [59,60]. Research about evapotranspiration is a very
active field nowadays. Paltineanu et al. (2012) [61] discussed evapotranspiration versus climatic water
deficit. Falamarzi et al. (2014) [62] estimated evapotranspiration from temperature and surface wind
speed data using artificial and wavelet neural networks (WNNs).

At the latitude of Tahiti, maximum mean insolation essentially corresponds to horizontal terrains.
In other words, mean insolation will be lower on the slopes, leading to less evapotranspiration and
then a little less PW in the atmosphere. This can be seen in another way—when you are on a slope,
part of the uphill sky is masked, leading to less mean insolation. To give precise numbers is difficult,
as the relation between PW and evapotranspiration must be certainly averaged over some area. As the
topography of the volcano is very rough, with extremely large small-scale variations, this averaging is
almost impossible. For example, THTI is on a crest ridge with an 8% slope, but with nearly a 50 m
cliff on one side (see Figure 1b). This is also complicated by the changes in vegetation cover with the
altitude that can reach up to 2200 m in Tahiti [63].
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Figure 16. Hourly insolation variation from the pyranometer collocated with the FAA1 station, showing
the strong annual signature driven by the Sun sky trajectory. The PW data relative to FAA1 station (see
Section 6.7) are shown in red dots. A time shift of about two months between the two series is clearly
visible, probably linked to the thermal inertia of the soil or/and a time delay in the vegetation response
(evapotranspiration) to the insolation.

This influence of insolation can be partially tested by doing the Fourier analysis of the ratio
(PW (THTI)−PW (FAA1))/PW (FAA1). As the two stations are very close, the insolation that acts
as a multiplicative factor in the determination PW values through evapotranspiration is nearly the
same at the top of the atmosphere for both stations. By making this ratio, which has a mean value of
−0.0355 ± 0.0002 (Figure 17a), the multiplicative factor, that has essentially a pure annual signature,
should disappear, or at least be attenuated. This is what is observed by comparing Figure 10d (the PW
differences) and Figure 17b (the PW ratio) with respect to the other harmonic components. This line of
reasoning is also valid for the wind that also has an annual signature, but with a greater variability
and therefore a wider Fourier spectrum. It should be also noted that the mean slope between the
THTI and FAA1 stations is −0.0344, a pretty close value, but this could be just a coincidence. Another
argument is that Figure 16 clearly shows a causal time shift of about two months between the PW
and insolation time series. This shift is certainly due to the response of the soil and/or vegetation to
insolation [64–66]. Although these arguments are not evidence, we think that they point to the main
reason, i.e., the difference in insolation between the THTI and FAA1 stations, to explain the differences
between PW time series.
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Figure 17. (a) Time series, over the three years of this study, of the ratio of PW values, defined as
(PW(THTI)−PW(FAA1))/PW(FAA1). The mean value of this ratio is −0.0355 ± 0.0002. (b) Fourier
analysis of the time series of subfigure (a). The annual component is largely attenuated with respect to
the annual component in the time series of (PW(THTI)−PW(FAA1)), as seen in Figure 10d, pointing to
a common factor with annual periodicity in the original time series of PW values for the two sites.
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7. Conclusions

In this paper, we compared the PW estimates from two nearby permanent GPS stations (THTI
and FAA1) in the tropical Tahiti Island (South Pacific) over a three-year period. The altitude difference
between the two stations is only 86.14 m, and their horizontal distance difference is 2.56 km. Although
these two stations are very close, they are located in very different surroundings. One of the stations
is close to the sea shore (FAA1), on a very large flat terrain. The other one is located along the small
Outumaoroa stream (THTI) along the slopes of the volcano, at 98.49 m altitude. In order to obtain
reliable PW differences between the two stations, we processed the PW estimates for each station with
great care, with a metrological validation of each step, and site tailored ZWD-to-PW relationships.

This study shows first that the differences between the two time series of PW values between
THTI and FAA1 are not random, that they essentially contain an annual signature and other minor
Fourier components, down to a diurnal signature. Secondly, the differences in altitude play only
a minor role. The wind, through the transport of water vapor and evapotranspiration, plays a second
role, with certainly a highly complex interaction between topography and winds [21,67]. In our case,
the difference in insolation is certainly the key player. Moreover, this study points to the fact that
a dense network of GPS stations, down to the hundred meters scale, will give constraints about the
interaction between topography, surface temperature, wind, and evapotranspiration. This has been
already noted by Mori et al. (2007) [68]. Another important conclusion is that when PW time series
from isolated sites are assimilated in global meteorology or climate models, the associated formal error
given to these time series at the end of the GNSS processing chain should be increased in order to take
into account these micro-scale variations.
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Appendix A

The statistical summary (bias, RMS and STD) between our GPS results and reference data is given,
their definitions can be shown:

Bias =
1
n

∑n

i=1
(Gi −Ri), (A1)

RMS =

√√
1
n

n∑
i=1

(Gi −Ri)
2, (A2)

STD =

√√
1
n

n∑
i=1

((Gi −Ri) − Bias)2, (A3)

where i = 1, 2, 3, . . . n. n denotes the total number of data points. In this case, G denotes our results
from GPS data processing and R is the reference data.
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