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On the vaccination threshold for Covid-19
in French Polynesia

Gaetan Bisson * Roger Oyono *

Abstract

We develop a graph-based epidemic model tailored to the 2020 Covid-19 pandemic
in French Polynesia. Our computations indicate that herd immunity increases drastically
when a threshold percentage of vaccinated individuals is reached. Our idealized model
yield a threshold value of about 45%.

1 Introduction
It is well-known that highly communicable diseases such as measles can only be thwarted
when a very large proportion of the population is immune and vaccination is an effective way
to artificially boost public immunity. In this paper, we seek to compute the herd immunity
threshold (HIT), that is, the proportion of individuals who must be immune in order to ensure
that reintroducing the disease in an otherwise healthy population only leads to contained,
non-exponential spread.

This threshold is often confused with the final cumulative incidence rate (FCIR) which is
the eventual proportion of recovered individuals in a naturally spreading pandemic. For simple
compartmental models such as SIR, those values are in fact equal and we have

HIT = FCIR = 1− 1/R0

where R0 denotes the basic reproductive number of the disease. For coronavirus disease 2019
(Covid-19), current estimates [13, 1] give R0 ∈ [2.4, 3.4]. Considering a worst-case scenario of
R0 ≈ 3.4, government officials thus seek an immunization rate of 1− 1/3.4 ≈ 70% to contain
further epidemics.

Over the past year it has been widely argued that the herd immunity threshold for Covid-
19 ought in fact to be smaller [8, 3]. We investigate this claim by developing a graph-based
epidemic model. Such models provide finer-grained methods for simulating the spread of
a communicable disease through a population with a heterogeneous social graph. We calibrate
our model on public data specific to the 2020 Covid-19 pandemic in French Polynesia.

We then use this model to compute the effectiveness of vaccination as measured by the
resulting FCIR when reintroducing the disease in a partly immune population. Our computa-
tions show that vaccination sharply increases in effectiveness when a threshold proportion of
about 45% immune individuals is reached. While considerations not taken into account by
our idealized model (such as variants or antibody decay) surely affect this threshold value, we
argue that the overall effect stands.
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Figure 1: Simulating the propagation of the disease along the social graph.

2 Epidemic models

2.1 The SIRmodel
The SIR model [11] aims to predict the spread of an infectious disease; to this extent, it
partitions the population in compartments: susceptible individuals (S), infectious individuals
(I), recovered individuals (R). Flow patterns between compartments are generally described by
ordinary differential equations such as:

∂S
∂ t
= −βI S

N
,

∂ I
∂ t
=
βI S
N
− γ I , ∂R

∂ t
= γ I ,

whereN is the total population,β is the probability of contagion per individual per unit of
time, and γ is the inverse of the duration of contagion.

Thismodel and itsmany variants implicitly assume perfect and uniform interaction between
the populations of each compartment, as if each individual was in contact with every other
in a homogeneous way. This is equivalent to assuming the social graph to be complete. This
profound assumption on spreading patterns makes such models very simple and thus easy to
work with but exhibits suboptimal correlation with observed data.

2.2 Graph-based models
To simulate the spread of an epidemic while taking into account the complexity of social
interactions, we rely on graph-based models, also known as network-based models.

A graph consists of a set of vertices V and a set of edges E ⊂ V 2. In the social graph,
vertices represent individuals and edges correspond to significant social interactions. In this
context we restrict to graphs which are non directed, simple, and connected. Since the social
graph cannot be rigorously defined or even computed, we use randomly generated graphs with
specific properties: vertices are laid out on a two-dimensional lattice; for each vertex, a degree
is chosen randomly according to a Poisson distribution; as many vertices are then randomly
chosen from neighboring lattice points and connected to it.

Figure 1 shows the first four steps of a simulation of an epidemic along the edges of a social
graph. Our model computes such simulations by tracking the state of each vertex: susceptible,
incubating, contagious or recovered. Initially, the entire population is assumed susceptible
and we randomly select a given number to be incubating. After a period of incubation, they
become contagious and are then able to pass on the disease to their neighbors in the social
graph. Those vertices eventually become recovered and thus immune.

We refer the reader to [12] for an overview of graph-based models and we note that such
models have already produced important results concerning theCovid-19 pandemic for specific
geographical areas [16, 5].
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Figure 2: Sample run of our graph-based model.

3 Impact of vaccination on FCIR

3.1 Calibrating our model
3.1.1 Graph-generating procedure

Our graphs are generated as described above to best model the social graph of French Polynesia.
The latest count reports 275,916 inhabitants and we thus generate graphs containing a total of
250,000 vertices each. The degree of vertices is randomly distributed in [4,∞) according to
a Poisson distribution with mean-value 12. This allows us to model a wide range of individuals
with both small and large social circles [15] as well as to account for virus-specific phenomenon
such as overdispersion [6].

We further ensure that our graphs are connected with a diameter of about 30 which is
significantly higher than the degree of separation butmore realistic given that Covid-19mainly
spreads through close interactions.

3.1.2 Disease-related parameters

Our model relies on state-of-the-art range estimates for Covid-19 incubation period [14] and
contagion period [9]. Since there is no public data on the basic reproductive number R0 in
French Polynesia, we conservatively use the upper bound 3.4 of the worldwide estimated range.
Our algorithm’s parameters are further chosen such that this value matches the initial observed
spike of R0 where the epidemic grows exponentially.

However we note that the actual value of R0 should be slightly smaller in French Polynesia
due to multiple factors pertaining to tropical climate [18, 17] including: higher humidity and
thus less communicability via droplets [2]; and higher temperatures and thus a lower frequency
of indoor social activities [4].

3.1.3 Sample runs

We compute ten thousand sample runs of our model on an healthy population and verify that
the output matches the expected values. See Figure 2 for one such run which is typical of what
would be expected of a naturally evolving pandemic without any protective measures such
as lockdowns or vaccination. As expected the resulting FCIR lies in the range [75%, 85% ]
which is widely accepted for Covid-19 [20, 10].
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Figure 3: FCIR for an epidemic in a partly-vaccinated population. For each vaccination rate
in 0.1% increment, FCIR has been computed for a thousand randomly chosen graphs; the
black line shows the median value, and darker to lighter gray areas display probability ranges
[25%, 75% ], [10%, 90% ], and [5%, 95% ].

3.2 Experimental data
We now consider a healthy population of which a given percentage has been vaccinated and
thus considered immune. The disease is then introduced and we compute the final cumulative
incidence rate (FCIR) of the epidemic. In order to determine the herd immunity threshold
(HIT), that is, the threshold vaccination rate which prevents the reintroduced disease from
spreading exponentially, we compute, for each percentage of vaccinated individuals in 0.1%
increments, a thousand sample runs of our model over randomly chosen graphs. Figure 3
shows our results.

Our computations reveal a sharp increase in vaccination effectiveness around a threshold rate
of about 40%. For vaccination rates below this threshold, the level of protection asmeasured by
FCIR varies roughly linearly with the vaccination rate, as predicted by homogeneous models
such as SIR. For vaccination rates above this threshold, the level of protection quickly reaches
its maximum: exponential spread of the disease is not observed at vaccination rates of 45%
and above.

We stress actual threshold values may differ since our model reflects an idealized version
of the 2020 Covid-19 pandemic and, as such, does not account for several factors including
multiple circulating variants of the virus [7] and vaccine effectiveness [19].

Nevertheless we argue that the general behavior stands, namely that vaccination sharply
increases in effectiveness around a threshold value. Said HIT value is necessarily smaller than
the FCIR for a naturally-evolving pandemic. Further research remains necessary to confidently
assess the HIT value.
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4 Conclusion
We conclude that, as a public health strategy, vaccination is much more effective at preventing
Covid-19 pandemics than predicted by homogeneous models. While its effectiveness initially
grows linearly in the proportion of immune individuals, it sharply increases when a threshold
immunity rate is reached. While our model is unsuited to determine actual values, it indicates
that, at least in the context of French Polynesia, the actual HIT is likely closer to 50% than to
the generally accepted 70% target.
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