Hyperbolic tessellations and generators of K_3 for imaginary quadratic fields - Université de la Polynésie française
Article Dans Une Revue Forum of Mathematics, Sigma Année : 2021

Hyperbolic tessellations and generators of K_3 for imaginary quadratic fields

Résumé

We develop methods for constructing explicit generating elements, modulo torsion, of the K3-groups of imaginary quadratic number fields. These methods are based on either tessellations of hyperbolic 3-space or on direct calculations in suitable pre-Bloch groups, and lead to the very first proven examples of explicit generators, modulo torsion, of any infinite K3-group of a number field. As part of this approach, we make several improvements to the theory of Bloch groups for K3 of any infinite field, predict the precise power of 2 that should occur in the Lichtenbaum conjecture at −1, and prove that this prediction is valid for all abelian number fields.
Fichier principal
Vignette du fichier
1909.09091.pdf (653.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02550079 , version 1 (21-04-2020)

Identifiants

Citer

David Burns, Rob M. H. de Jeu, Herbert Gangl, Alexander D. Rahm, Dan Yasaki. Hyperbolic tessellations and generators of K_3 for imaginary quadratic fields. Forum of Mathematics, Sigma, 2021, 9 (E40), ⟨10.1017/fms.2021.9⟩. ⟨hal-02550079⟩

Collections

UPF 35430 ANR
88 Consultations
108 Téléchargements

Altmetric

Partager

More