The distribution of rational numbers on Cantor's middle thirds set - Université de la Polynésie française
Pré-Publication, Document De Travail Année : 2010

The distribution of rational numbers on Cantor's middle thirds set

Résumé

We give a heuristic argument predicting that the number N * (T) of ra-tionals p/q on Cantor's middle thirds set C such that gcd(p, q) = 1 and q ≤ T , has asymptotic growth O(T d+ε), for d = dim C. We also describe extensive numerical computations supporting this heuristic. Our heuristic predicts a similar asymptotic if C is replaced with any similar fractal with a description in terms of missing digits in a base expansion. Interest in the growth of N * (T) is motivated by a problem of Mahler on intrinsic Diophantine approximation on C.
Fichier principal
Vignette du fichier
1909.01198.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02550072 , version 1 (21-04-2020)

Identifiants

Citer

Alexander D. Rahm, Noam Solomon, Tara Trauthwein, Barak Weiss. The distribution of rational numbers on Cantor's middle thirds set. 2010. ⟨hal-02550072⟩

Collections

UPF 35430
71 Consultations
104 Téléchargements

Altmetric

Partager

More